Preview

FOCUS. Endocrinology

Advanced search

The role of the kidneys in glucose homeostasis: Mechanisms of effectiveness of sodium-glucose cotransporter type 2 inhibitors

https://doi.org/10.62751/2713-0177-2024-5-4-15

Abstract

The kidneys are a key organ that supports glucose homeostasis in the body. The most important and clinically interesting glucose transporters at the renal level are type 1 sodium-glucose cotransporters (SGLT1) and type 2 (SGLT2). Their adequate work in conditions of euglycemia ensures complete reabsorption of glucose by the kidneys. However, with type 2 diabetes mellitus (T2DM2), it is necessary to inhibit the action of these transporters. Thus, SGLT2 inhibitors (iSGLT2) provide a decrease in blood glucose levels due to glucosuria. Simultaneously with glucosuria, natriuresis occurs, which provides a decrease in the activity of the systemic and renal renin-angiotensin-aldosterone system, a decrease in the severity of the sympathetic nervous system, a decrease in blood pressure, a decrease in the severity of interstitial edema, which together determines the cardioprotective and nephroprotective effects of iSGLT2. Therefore, iSGLT2 should be prescribed to all patients with T2DM2 and the presence of chronic kidney disease (CKD) and/or cardiovascular diseases (CVD). Moreover, data from clinical studies, as well as modern clinical recommendations, dictate the need to prescribe drugs from this group for CKD without T2DM2 and for heart failure without T2DM2.

About the Authors

T. Yu. Demidova
Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Tatiana Yu. Demidova – D. Sci. (Med.), Prof.

Moscow

Scopus Author ID: 7003771623



O. A. Kislyak
City Polyclinic No. 12»
Russian Federation

Oksana A. Kislyak – Dr. of Sci. (Med.), Professor

Moscow



К. G. Lobanova
Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

Kristina G. Lobanova – C. Sci. (Med.)

Moscow



L. D. Kharchilava
City Polyclinic No. 12»

Liya D. Kharchilava – endocrinologist

Moscow



References

1. Sędzikowska A, Szablewski L. Human glucose transporters in renal glucose homeostasis. Int J Mol Sci. 2021; 22(24): 13522. doi: 10.3390/ijms222413522.

2. Sun B, Chen H, Xue J et al. The role of GLUT2 in glucose metabolism in multiple organs and tissues. Mol Biol Rep. 2023; 50(8): 6963–74. doi: 10.1007/s11033-023-08535-w.

3. Hotait ZS, Lo Cascio JN, Choos END et al. The sugar daddy: The role of the renal proximal tubule in glucose homeostasis. Am J Physiol Cell Physiol. 2022; 323(3): C791–803. doi: 10.1152/ajpcell.00225.2022.

4. Vallon V. Glucose transporters in the kidney in health and disease. Pflugers Arch. 2020; 472(9): 1345–70. doi: 10.1007/s00424-020-02361-w.

5. Gronda EG, Vanoli E, Iacoviello M et al. Renal effects of SGLT2 inhibitors in cardiovascular patients with and without chronic kidney disease: Focus on heart failure and renal outcomes. Heart Fail Rev. 2023; 28(3): 723–32. doi: 10.1007/s10741-021-10211-9.

6. Дедов И.И., Шестакова М.В., Майоров А.Ю. и соавт. Алгоритмы специализированной медицинской помощи больным сахарным диабетом. 11-й выпуск. М. 2023. doi: 10.14341/DM13042.

7. Brown E, Heerspink HJL, Cuthbertson DJ et al. SGLT2 inhibitors and GLP-1 receptor agonists: Established and emerging indications. Lancet. 2021; 398(10296): 262–76. doi: 10.1016/S0140-6736(21)00536-5.

8. Rieg T, Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018; 61(10): 2079–86. doi: 10.1007/s00125-018-4654-7.

9. Upadhyay A. SGLT2 inhibitors and kidney protection: Mechanisms beyond tubuloglomerular feedback. Kidney360. 2024; 5(5): 771–82. doi: 10.34067/KID.0000000000000425.

10. Bonora BM, Avogaro A, Fadini GP. Extraglycemic effects of SGLT2 inhibitors: A review of the evidence. Diabetes Metab Syndr Obes. 2020; 13: 161–74. doi: 10.2147/DMSO.S233538.

11. You Y, Zhao Y, Chen M et al. Effects of empagliflozin on serum uric acid level of patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Diabetol Metab Syndr. 2023; 15(1): 202. doi: 10.1186/s13098-023-01182-y.

12. Liu Y, Wu M, Xu B et al. Empagliflozin alleviates atherosclerosis progression by inhibiting inflammation and sympathetic activity in a normoglycemic mouse model. J Inflamm Res. 2021; 14: 2277–87. doi:10.2147/JIR.S309427.

13. Packer M, Wilcox CS, Testani JM. Critical analysis of the effects of SGLT2 inhibitors on renal tubular sodium, water and chloride homeostasis and their role in influencing heart failure outcomes. Circulation. 2023; 148(4): 354–72. doi: 10.1161/CIRCULATIONAHA.123.064346.

14. Zhang J, Wei J, Jiang S et al. Macula densa SGLT1-NOS1-tubuloglomerular feedback pathway, a new mechanism for glomerular hyperfiltration during hyperglycemia. J Am Soc Nephrol. 2019; 30(4): 578–93. doi: 10.1681/ASN.2018080844.

15. Ferrannini E, Mark M, Mayoux E. CV protection in the EMPA-REG outcome trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016; 39(7): 1108–14. doi: 10.2337/dc16-0330.

16. Cuenoud B, Hartweg M, Godin JP et al. Metabolism of exogenous D-beta-hydroxybutyrate, an energy substrate avidly consumed by the heart and kidney. Front Nutr. 2020; 7: 13. doi:10.3389/fnut.2020.00013.

17. Park CH, Lee B, Han M et al. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Discov. 2022; 8(1): 12. doi:10.1038/s41420-021-00801-9.

18. Onishi A, Fu Y, Patel R et al. A role for tubular Na(+)/H(+) exchanger NHE3 in the natriuretic effect of the SGLT2 inhibitor empagliflozin. Am J Physiol Renal Physiol. 2020; 319(4): F712–28. doi: 10.1152/ajprenal.00264.2020.

19. Клинические рекомендации. Хроническая болезнь почек. Национальная Ассоциация нефрологов. 2024. Доступ: https://rusnephrology.org/wp-content/uploads/2024/06/КР_ХБП_от_10.06.2024.pdf (дата обращения – 01.11.2024).

20. Хасанов Н.Р. Эффекты применения ингибитора натрийглюкозного котранспортера 2 типа дапаглифлозина у пациентов с сердечной недостаточностью с низкой фракцией выброса левого желудочка. Российский кардиологический журнал. 2020; 25(8): 83–90. doi: 10.15829/1560-4071-2020-4049.

21. Trum M, Riechel J, Wagner S. Cardioprotection by SGLT2 inhibitors-does it all come down to Na(+)? Int J Mol Sci. 2021; 22(15): 7976. doi: 10.3390/ijms22157976.

22. Philippaert K, Kalyaanamoorthy S, Fatehi M et al. Cardiac late sodium channel current is a molecular target for the sodium/glucose cotransporter 2 inhibitor empagliflozin. Circulation. 2021; 143(22): 2188–204. doi: 10.1161/CIRCULATIONAHA.121.053350.

23. Fitchett D, Zinman B, Wanner C et al.; EMPA-REG OUTCOME® Trial Investigators. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: Results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016; 37(19): 1526–34. doi:10.1093/eurheartj/ehv728.

24. Mahaffey KW, Neal B, Perkovic V et al. Canagliflozin for primary and secondary prevention of cardiovascular events: Results from the CANVAS Program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018; 137(4): 323–34. doi: 10.1161/CIRCULATIONAHA.117.032038.

25. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–57. doi: 10.1056/NEJMoa1812389.

26. Cherney DZ, Pratley RE, Charbonnel B et al. The VERTIS CV trial. Cardiovascular outcomes following ertugliflozin treatment in patients with type 2 diabetes mellitus and atherosclerotic cardiovascular disease. Presentation at: the 56th Annual Meeting of the European Association for the Study of Diabetes. September 21–25, 2020; Virtual ScientificSessions. Available from: https://www.easd.org/annual-meeting/easd-2020.html (date of access – 01.11.2024).

27. American Diabetes Association Professional Practice Committee. 9. Pharmacologic approaches to glycemic treatment: Standards of care in diabetes – 2024. Diabetes Care. 2024; 47(Suppl 1): S158–78. doi: 10.2337/dc24-S009.

28. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020; 25(11): 311–374. doi: 10.15829/1560-4071-2020-4083.

29. Ларина В.Н., Скиба И.К., Скиба А.С. Краткий обзор обновлений клинических рекомендаций по хронической сердечной недостаточности Европейского общества кардиологов 2021 года. Российский кардиологический журнал. 2022; 27(2): 97–105. doi: 10.15829/1560-4071-2022-4820.

30. Для лекарственного препарата Форсига® (дапаглифлозин) зарегистрировано новое показание: хроническая болезнь почек. Сахарный диабет. 2021; 24(5): 487.

31. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2024; 105(4S): S117–314. doi: 10.1016/j.kint.2023.10.018.


Review

For citations:


Demidova T.Yu., Kislyak O.A., Lobanova G., Kharchilava L.D. The role of the kidneys in glucose homeostasis: Mechanisms of effectiveness of sodium-glucose cotransporter type 2 inhibitors. FOCUS. Endocrinology. 2024;5(4):18-27. (In Russ.) https://doi.org/10.62751/2713-0177-2024-5-4-15

Views: 121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)