Preview

FOCUS. Endocrinology

Advanced search

The evolution of body composition assessment: from body mass index to body composition profiling

https://doi.org/10.15829/1560-4071-2023-13

EDN: NHKQST

Abstract

Obesity is currently an important medical and social problem due to the multiple associated conditions that worsen the health of the population. Thus, there is a need for the development of accurate and non-invasive methods of body composition assessment for the purposes of diagnosing and monitoring the treatment of this disease. According to the estimates of the World Obesity Federation, by 2025 the prevalence of this disease will reach 21% in women, and 18% in men. This literature review is dedicated to the subject of various methods for assessing the degree of obesity, as well as determining the composition of the body in the context of historical achievements and a critical assessment of new technologies.

About the Authors

E. V. Kiseleva
Endocrinology Research Centre
Russian Federation

Moscow



E. A. Pigarova
Endocrinology Research Centre
Russian Federation

Moscow



N. G. Mokrysheva
Endocrinology Research Centre
Russian Federation

Moscow



References

1. Dedov II, Mokrysheva NG, Mel’nichenko GA, et al. Obesity. Clinical guidelines. Consilium Medicum. 2021;23(4):311-25. (In Russ.) Дедов И. И., Мокрышева Н. Г., Мельниченко Г. А. и др. Ожирение. Клинические рекомендации. Consilium Medicum. 2021;23(4):311-25. doi:10.26442/20751753.2021.4.200832.

2. Peterkova VA, Bezlepkina OB, Bolotova NV, et al. Clinical guidelines "Obesity in children". Problems of Endocrinology. 2021;67(5):67-83. (in Russ.)

3. Maximus PS, Al Achkar Z, Hamid PF, et al. Adipocytokines: Are they the Theory of Everything? Cytokine. 2020;133:155144. doi:10.1016/j.cyto.2020.155144.

4. Borga M, West J, Bell JD, et al. Advanced body composition assessment: from body mass index to body composition profiling. J Investig Med. 2018;66(5):1-9. doi:10.1136/jim-2018-000722.

5. Neeland IJ, Ayers CR, Rohatgi AK, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring). 2013;21(9):E439-47. doi:10.1002/oby.20135.

6. Brunt EM, Wong VW, Nobili V, et al. Nonalcoholic fatty liver disease. Nature Reviews Disease Primers. 2015;1:15080. doi:10.1038/nrdp.2015.80.

7. Stanford KI, Goodyear LJ. Muscle-Adipose Tissue Cross Talk. Cold Spring Harb Perspect Med. 2018;8(8):a029801. doi:10.1101/cshperspect.a029801.

8. Bluher M. Metabolically Healthy Obesity. Endocr Rev. 2020;41(3):bnaa004. doi:10.1210/endrev/bnaa004.

9. Chan DC, Watts GF, Barrett PH, et al. Waist circumference, waist-to-hip ratio and body mass index as predictors of adipose tissue compartments in men. QJM. 2003;96:441-7.

10. Dedov II, Shestakova MV, Melnichenko GA, et al. Interdisciplinary clinical practice guidelines "Management of obesity and its comorbidities". Obesity and metabolism. 2021;18(1):5-99. (In Russ.)

11. Fouque D, Vennegoor M, ter Wee P, et al. EBPG guideline on nutrition. Nephrol Dial Transplant. 2007;22 Suppl 2:ii45-87. doi:10.1093/ndt/gfm020.

12. Barbosa-Silva MC, Barros AJ. Bioelectrical impedance analysis in clinical practice: a new perspective on its use beyond body composition equations. Curr Opin Clin Nutr Metab Care. 2005;8(3):311-7. doi:10.1097/01.mco.0000165011.69943.39.

13. Gaivoronskiy IV, Nichiporuk GI, Gaivoronskiy IN, Nichiporuk NG. Bioimpedansometry as a method of the component bodystructure assessment (review). Vestnik SPbSU. Medicine. 2017;12(4):365-84. (In Russ.)

14. Lemos T, Gallagher D. Current body composition measurement techniques. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):310-4. doi:10.1097/MED.0000000000000360.

15. Gonzalez MC, Barbosa-Silva TG, Bielemann RM, et al. Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr. 2016;103(3):712-6. doi:10.3945/ajcn.115.116772.

16. Genton L, Herrmann FR, Spörri A, Graf CE. Association of mortality and phase angle measured by different bioelectrical impedance analysis (BIA) devices. Clin Nutr. 2018;37(3):1066-9. doi:10.1016/j.clnu.2017.03.023.

17. Kurlykin AV, Konstantinova AN, Yakimenko VA, Ovsyannikov YuG. Bioimpedance Analysis as Part of Pre-Surgery Examination in Pediatric Hematology: Literature Review. Hematology. 2016;5(122):36-9. (In Russ.)

18. Campa F, Toselli S, Mazzilli M, et al. Assessment of Body Composition in Athletes: A Narrative Review of Available Methods with Special Reference to Quantitative and Qualitative Bioimpedance Analysis. Nutrients. 2021;13(5):1620. doi:10.3390/nu13051620.

19. Martirosov EG, Nikolaev DV, Rudnev SG. Technologies and methods of human body composition assessment. Moscow: Nauka, 2006. p. 81-4. (In Russ.)

20. Kuriyan R. Body composition techniques. Indian J Med Res. 2018;148(5):648-58. doi:10.4103/ijmr.IJMR_1777_18.

21. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-Ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038. doi:10.1371/journal.pone.0007038.

22. Misnikova IV, Kovaleva YuA, Klimina NA, Polyakova EYu. Assessment of muscle and fat mass in type 2 diabetes mellitus patients by dual-energy X-ray absorptiometry. Almanac of Clinical Medicine. 2018;46(3):222-32. (In Russ.)

23. Suslyaeva NM, Zavadovskaya VD, Zavyalova NG, et al. Ultrasound evaluation of visceral obesity. Russian Electronic Journal of Radiology. 2014;(4):53-9. (In Russ.)

24. Gruther W, Benesch T, Zorn C, et al. Muscle wasting in intensive care patients: ultrasound observation of the M. quadriceps femoris muscle layer. J Rehabil Med. 2008;40(3):185-9. doi:10.2340/16501977-0139.

25. Paris MT. Body Composition Analysis of Computed Tomography Scans in Clinical Populations: The Role of Deep Learning. Lifestyle Genom. 2020;13(1):28-31. doi:10.1159/000503996.

26. Westbrook C, Kaut Roth C, Talbot J. MRI in practice. Moscow: BINOM. Knowledge laboratory, 2015. p. 37-8. (In Russ.)

27. Middleton MS, Haufe W, Hooker J, et al. Quantifying Abdominal Adipose Tissue and Thigh Muscle Volume and Hepatic Proton Density Fat Fraction: Repeatability and Accuracy of an MR Imaging-based, Semiautomated Analysis Method. Radiology. 2017;283(2):438-49.

28. Bray TJ, Chouhan MD, Punwani S, et al. Fat fraction mapping using magnetic resonance imaging: insight into pathophysiology. Br J Radiol. 2018;91:20170344.

29. Unal E, Karaosmanoğlu AD, Akata D, et al. Invisible fat on CT: making it visible by MRI. Diagn Interv Radiol. 2016;22(2):133-40. doi:10.5152/dir.2015.15286.

30. Robinson PJ. The effects of cancer chemotherapy on liver imaging. Eur Radiol. 2009;19:1752-62.

31. Chung KY, Mayo-Smith WW, Saini S, et al. Hepatocellular adenoma: MR imaging features with pathologic correlation. AJR Am J Roentgenol. 1995;165:303-8.

32. Borga M. MRI adipose tissue and muscle composition analysis-a review of automation techniques. Br J Radiol. 2018;91(1089):20180252. doi:10.1259/bjr.20180252.

33. Shen W, Punyanitya M, Chen J, et al. Visceral adipose tissue: relationships between single slice areas at different locations and obesity-related health. Int J Obes (Lond). 2007;31:763-9.

34. Irlbeck T, Massaro Jm, Bamberg F, et al. Association between single-slice measurements of visceral and abdominal subcutaneous adipose tissue with volumetric measurements: the Framingham Heart Study. Int J Obes (Lond). 2010;34:781-7.

35. Linder N, Solty K, Hartmann A, et al. Half-body MRI volumetry of abdominal adipose tissue in patients with obesity. BMC Med Imaging. 2019;19(1):80. doi:10.1186/s12880-019-0383-8.

36. Markova TN, Kichigin VA, Diomidova VN, et al. Evaluation of adipose tissue mass with anthropometric and visualization methods; its relation to the components of the metabolic syndrome. Obesity and metabolism. 2013;10(2):23-7. (In Russ.)

37. Kokov AN, Brel NK, Masenko VL, et al. Quantitative assessment of visceral adipose depot in patients with ischemic heart disease by using of modern tomographic methods. Complex Issues of Cardiovascular Diseases. 2017;(3):113-9. (In Russ.)

38. Romantsova TI, Poluboyarinova IV, Roik OV. Dynamics of adipose tissue changes measured by MRI in obese patients during Reduxin treatment. Obesity and metabolism. 2012;9(4):39-43. (In Russ.)

39. Ludescher B, Machann J, Eschweiler GW, et al. Correlation of fat distribution in whole body MRI with generally used anthropometric data. Invest Radiol. 2009;44:712-9.

40. West J, Dahlqvist Leinhard O, Romu T, et al. Feasibility of MR-Based Body Composition Analysis in Large Scale Population Studies. PLoS One. 2016;11(9):e0163332. doi:10.1371/journal.pone.0163332.

41. Muller MJ, Enderle J, Pourhassan M, et al. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015;102:807-19.

42. Napolitano A, Miller SR, Murgatroyd PR, et al. Validation of a quantitative magnetic resonance method for measuring human body composition. Obesity (Silver Spring). 2008;16(1):191-8. doi:10.1038/oby.2007.29.

43. Franz D, Karampinos DC, Rummeny EJ, et al. Discrimination between brown and white adipose tissue using a 2-point Dixon water-fat separation method in simultaneous PET/MRI. Nucl Med. 2015;56:1742-7.

44. Sun L, Yan J, Sun L, et al. A synopsis of brown adipose tissue imaging modalities for clinical research. Diabetes Metab. 2017;43(5):401-10. doi:10.1016/j.diabet.2017.03.008.

45. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24-36. doi:10.1038/nrendo.2013.204.

46. Gariani K, Gariani J, Amzalag G, et al. Hybrid PET/MRI as a tool to detect brown adipose tissue: Proof of principle. Obes Res Clin Pract. 2015;9(6):613-7. doi:10.1016/j.orcp.2015.05.004.


Review

For citations:


Kiseleva E.V., Pigarova E.A., Mokrysheva N.G. The evolution of body composition assessment: from body mass index to body composition profiling. FOCUS. Endocrinology. 2023;4(2):12-18. (In Russ.) https://doi.org/10.15829/1560-4071-2023-13. EDN: NHKQST

Views: 1517


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)