Clinical calculator for calculating appendicular musculoskeletal mass of elderly patients according to anthropometry and bioimpedance analysis
https://doi.org/10.15829/2713-0177-2023-3-16
Abstract
Objective: development of an applied clinical calculator for calculating the appendicular mass of skeletal muscles (ASMM Calculator) in elderly patients based on bioimpedance analysis of body composition and anthropometry.
Material and methods: the algorithm of the ASMM Calculator was developed based on the analysis of the results of a single-stage crosssectional study of G. Sergi (Department of Geriatrics, University of Padua, Italy); the calculation of appendicular musculoskeletal mass and its index is based on the values of anthropometry and bioimpedance analysis of body composition.
Results:the matrix of the ASMM Calculator allows you to determine objective quantitative criteria for sarcopenia (appendicular musculoskeletal mass and its index) based on the values of five independent variables: the patient’s gender; height and body weight, electrical and reactive esistance of the body, the program provides for use directly in outpatient admission, has a volume of 12 kB, does not require specific hardware and software means, can be installed on a mobile device.
Conclusions: the use of the ASMM calculator in clinical practice allows the doctor to establish diagnostic criteria for sarcopenia in a timely manner, does not require significant professional time, provides grounds for verifying the diagnosis in accordance with the principles of evidence-based medicine; the program can be integrated into various medical information systems as a module of the medical decision support system.
About the Authors
N. A. PervyshinRussian Federation
Nikolai A. Pervyshin - PhD (Medicine), assistant of department of endocrinology and geriatrics
443099, Samara, Chapaevskaya st., 89
S. V. Bulgakova
Russian Federation
Svetlana V. Bulgakova – MD, PhD, the associate professor, Head of department of endocrinology and geriatrics
443099, Samara, Chapaevskaya st., 89
D. P. Kurmaev
Russian Federation
Dmitry P. Kurmaev - PhD (Medicine), assistant of department of endocrinology and geriatrics
443099, Samara, Chapaevskaya st., 89
E. V. Treneva
Russian Federation
Ekaterina V. Treneva - PhD (Medicine), associate professor of department of endocrinology and geriatrics
443099, Samara, Chapaevskaya st., 89
E. A. Shamin
Russian Federation
Evgeniy A. Shamin - student of the group 6231-020402D in the direction of training 02.04.02 “Fundamental Informatics and Information Technologies”
Samara, Moskovskoe shosse, 34
References
1. Lazebnik L.B., Konev Yu.V., Efremov L.I. Osnovnye problemy geriatrii - mnozhestvennost’ boleznej u pozhilogo bol’nogo [The main problems of geriatrics are the multiplicity of diseases in an elderly patient]. Klinicheskaya gerontologiya [Clinical gerontology]. 2019;25(1-2):4-9. (In Russian) https://doi.org/10.26347/1607-2499201901-02004-009.
2. Tkacheva O.N., Kotovskaya Yu.V., Runikhina N.K. et al. Klinicheskiye rekomendatsii «Starcheskaya asteniya» [Clinical guidelines on frailty]. Rossiyskiy zhurnal geriatricheskoy meditsiny [Russian Journal of Geriatric Medicine]. 2020;(1):11-46. (In Russian) https://doi.org/10.37586/2686-8636-1-2020-11-46.
3. Kurmaev D.P., Bulgakova S.V., Zakharova N.O. Chto pervichno: starcheskaya asteniya ili sarkopeniya? (obzor literatury) [What is primary: frailty or sarcopenia? (literature review)]. Uspekhi gerontologii [Advances in Gerontology]. 2021; 34 (6): 848-856. (In Russ.) https://doi.org/10.34922/AE.2021.34.6.005.
4. Cruz-Jentoft A.J., Bahat G., Bauer J. et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
5. Ferrucci L, Zampino M. A mitochondrial root to accelerated ageing and frailty. Nat Rev Endocrinol. 2020;16(3):133-134. https://doi.org/10.1038/s41574-020-0319-y.
6. Urzi F, Pokorny B, Buzan E. Pilot Study on Genetic Associations With AgeRelated Sarcopenia. Front Genet. 2021;11:615238. https://doi.org/10.3389/fgene.2020.615238.
7. Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-590. https://doi.org/10.1038/s41574-018-0059-4.
8. Brook MS, Wilkinson DJ, Phillips BE, et al. Skeletal muscle homeostasis and plasticity in youth and ageing: impact of nutrition and exercise. Acta Physiol (Oxf). 2016;216(1):15-41. https://doi.org/10.1111/apha.12532.
9. Pasini E, Corsetti G, Aquilani R, et al. Protein-Amino Acid Metabolism Disarrangements: The Hidden Enemy of Chronic Age-Related Conditions. Nutrients. 2018;10(4):391. https://doi.org/10.3390/nu10040391.
10. Kurmaev D.P., Bulgakova S.V., Treneva E.V., et al. Possibilities of using branched-chain amino acids for the treatment and prevention of sarcopenia in elderly and old patients (literature review). Acta Biomedica Scientifica. 2023;8(3):106-114. (In Russian) https://doi.org/10.29413/ABS.2023-8.3.11.
11. Mijnarends DM, Koster A, Schols JM, et al. Physical activity and incidence of sarcopenia: the population-based AGES-Reykjavik Study. Age Ageing. 2016;45(5):614-620. https://doi.org/10.1093/ageing/afw090.
12. Proshchaev K.I., Ivko K.O., Fadeeva P.A., Poltorackij A.N. Ocenka dvigatel’noj aktivnosti i sostoyaniya myshechnoj funkcii u lyudej pozhilogo vozrasta v processe primeneniya aerobnyh i anaerobnyh trenirovok [Assessment of motor activity and the state of muscle function in elderly people in the process of using aerobic and anaerobic training]. Nauchnyj rezul’tat. Medicina i farmaciya [Scientific result. Medicine and Pharmacy]. 2018;4(1):27-38. (In Russian) https://doi.org/10.18413/2313-8955-2018-4-1-27-38.
13. Leuchtmann AB, Mueller SM, Aguayo D, et al. Resistance training preserves highintensity interval training induced improvements in skeletal muscle capillarization of healthy old men: a randomized controlled trial. Sci Rep. 2020;10(1):6578. https://doi.org/10.1038/s41598-020-63490-x.
14. March DS, Wilkinson TJ, Burnell T, et al. The Effect of Non-Pharmacological and Pharmacological Interventions on Measures Associated with Sarcopenia in End-Stage Kidney Disease: A Systematic Review and Meta-Analysis. Nutrients. 2022;14(9):1817. https://doi.org/10.3390/nu14091817.
15. Ali AM, Kunugi H. Skeletal Muscle Damage in COVID-19: A Call for Action. Medicina (Kaunas). 2021;57(4):372. https://doi.org/10.3390/medicina57040372.
16. Martone AM, Tosato M, Ciciarello F, et al. Sarcopenia as potential biological substrate of long COVID-19 syndrome: prevalence, clinical features, and risk factors. J Cachexia Sarcopenia Muscle. 2022;13(4):1974-1982. https://doi.org/10.1002/jcsm.12931.
17. Golovanova E.D., Ayrapetov K.V. Rol’ bioimpedansometrii v ranney profilaktike sarkopenii u pozhilykh patsiyentov ambulatornogo zvena [Bio-impedancemetry in early prevention of sarcopenia in the elderly in outpatient care]. Klinicheskaya gerontologiya [Clinical gerontology]. 2021;27(9-10):3-9. (In Russian) https://doi.org/10.26347/1607-2499202109-10003-009.
18. Heymsfield SB, Gonzalez MC, Lu J, Jia G, Zheng J. Skeletal muscle mass and quality: evolution of modern measurement concepts in the context of sarcopenia. Proc Nutr Soc. 2015;74(4):355-366. https://doi.org/10.1017/S0029665115000129.
19. Kurmaev D.P., Bulgakova S.V., Treneva E.V. Bioimpedance analysis of body composition and phase angle for the diagnosis of sarcopenia and frailty (literature review). Advances in Gerontology. 2023;8(3):106-114. (In Russian) https://doi.org/10.34922/AE.2022.35.2.014.
20. Gonzalez MC, Barbosa-Silva TG, Bielemann RM, Gallagher D, Heymsfield SB. Phase angle and its determinants in healthy subjects: influence of body composition. Am J Clin Nutr. 2016;103(3):712-716. https://doi.org/10.3945/ajcn.115.116772.
21. Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis--part I: review of principles and methods. Clin Nutr. 2004;23(5):1226-1243. https://doi.org/10.1016/j.clnu.2004.06.004.
22. Sergi G, De Rui M, Veronese N, et al. Assessing appendicular skeletal muscle mass with bioelectrical impedance analysis in free-living Caucasian older adults. Clin Nutr. 2015;34(4):667-673. https://doi.org/10.1016/j.clnu.2014.07.010.
23. Heymsfield SB, Smith R, Aulet M, et al. Appendicular skeletal muscle mass: measurement by dual-photon absorptiometry. Am J Clin Nutr. 1990;52(2):214- 218. https://doi.org/10.1093/ajcn/52.2.214.
24. Булгакова С.В., Первышин Н.А., Курмаев Д.П. и др. Свидетельство о государственной регистрации программы для ЭВМ № 2023661149 Российская Федерация. «Клинический калькулятор расчета аппендикулярной скелетно-мышечной массы пожилых пациентов по данным биоимпедансного анализа»: № 2023619150: заявл. 10.05.2023: опубл. 29.05.2023; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации.
25. Булгакова С.В., Курмаев Д.П., Первышин Н.А., Шамин Е.А. Свидетельство о государственной регистрации программы для ЭВМ № 2023619861 Российская Федерация. Клинический калькулятор риска развития подтвержденной саркопении у пожилых пациентов: № 2023619207: заявл. 05.05.2023: опубл. 17.05.2023; заявитель Федеральное государственное бюджетное образовательное учреждение высшего образования «Самарский государственный медицинский университет» Министерства здравоохранения Российской Федерации.
26. Pervyshin N.A., Lebedeva E.A., Bulgakova S.V., Galkin R.A. Clinical calculator for the prognosis of rapid progression of chronic kidney disease in patients with type 2 diabetes mellitus. FOCUS. Endocrinology. 2023;4(2):30-35. (In Russian) https://doi.org/10.15829/1560-4071-2023-21.
Review
For citations:
Pervyshin N.A., Bulgakova S.V., Kurmaev D.P., Treneva E.V., Shamin E.A. Clinical calculator for calculating appendicular musculoskeletal mass of elderly patients according to anthropometry and bioimpedance analysis. FOCUS. Endocrinology. 2023;4(3):56-61. (In Russ.) https://doi.org/10.15829/2713-0177-2023-3-16