Preview

FOCUS. Endocrinology

Advanced search

Adrenocortical cancer: Prognosis, treatment and immune microenvironment

https://doi.org/10.62751/2713-0177-2024-5-4-17

Abstract

Adrenocortical cancer (ACС) is a rare malignant endocrine tumor from cells of the adrenal cortex with an incidence of 0.7–2 cases per 1 million population per year. Due to difficulties in diagnosis, ACС is detected already at the stage of metastasis, which limits the possibilities of surgical intervention and implies an unfavorable prognosis. The composition of the tumor microenvironment is crucial for the development of strategies for immunotherapeutic treatment of cancer. One component of the tumor microenvironment is immune cells, the presence of which is often associated with a better prognosis for patients. The purpose of this review is to describe the current possibilities for predicting the course and treatment of patients with ACC, as well as to focus on the latest published data on the immune microenvironment of the tumor in order to give some ideas about the prospects for its use for personalized patient management.

About the Authors

N. V. Pachuashvili
Endocrinology Research Centre; I.M. Sechenov First Moscow State Medical University, Ministry of Healthcare of Russia
Russian Federation

Nano V. Pachuashvili – Can. Sci. (Med.), Junior Research Assistant at Fundamental Pathomorphology of Endocrinology Research Centre

Moscow



E. E. Porubaeva
Endocrinology Research Centre; M.V. Lomonosov Moscow State University
Russian Federation

Erika E. Porubayeva – Junior Research Assistant at Fundamental Pathomorphology of Endocrinology Research Centre

Moscow



L. S. Urusova
Endocrinology Research Centre; I.M. Sechenov First Moscow State Medical University, Ministry of Healthcare of Russia
Russian Federation

Liliya S. Urusova – D. Sci. (Med.), Head of the Department of Fundamental Pathomorphology of Endocrinology Research Centre

Moscow



References

1. Fassnacht M, Assie G, Baudin E et al. Adrenocortical carcinomas and ma- lignant phaeochromocytomas: ESMO-EURACAN clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2020; 31(11): 1476–90. doi: 10.1016/j.annonc.2020.08.2099.

2. Мельниченко Г.А., Стилиди И.С., Алексеев Б.Я. с соавт. Федеральные клинические рекомендации по диагностике и лечению адренокортикального рака. Проблемы эндокринологии. 2014; 60(2): 51–67. doi: 10.14341/probl201460251-67.

3. Ettaieb M, Kerkhofs T, Engeland M et al. Past, present and future of epigenetics in adrenocortical carcinoma. Cancers. 2020; 12(5): 1218. doi: 10.3390/cancers12051218.

4. Sharma E, Dahal S, Sharma P et al. The characteristics and trends in adrenocortical carcinoma: A United States population based study. J Clin Med Res. 2018; 10(8): 636–40. doi: 10.14740/jocmr3503w.

5. Fassnacht M, Johanssen S, Quinkler M et al. Limited prognostic value of the 2004 International Union against Cancer staging classification for adrenocortical carcinoma: Proposal for a Revised TNM Classification. Cancer. 2009; 115(2): 243–50. doi: 10.1002/cncr.24030.

6. Jouinot A, Bertherat J. Management of endocrine disease: Adrenocortical carcinoma: differentiating the good from the poor prognosis tumors. Eur J Endocrinol. 2018; 178(5): R215–30. doi: 10.1530/EJE-18-0027.

7. Vanbrabant T, Fassnacht M, Assie G et al. Influence of hormonal functional status on survival in adrenocortical carcinoma: Systematic review and meta-analysis. Eur J Endocrinol. 2018; 179(6): 429–36. doi: 10.1530/EJE-18-0450.

8. Duregon E, Molinaro L, Volante M et al. Comparative diagnostic and prognostic performances of the hematoxylin-eosin and phospho-histone H3 mitotic count and Ki-67 index in adrenocortical carcinoma. Mod Pathol. 2014; 27(9): 1246–54. doi: 10.1038/modpathol.2013.230.

9. Almeida MQ, Bezerra-Neto JE, Mendonça BB et al. Primary malignant tumors of the adrenal glands. Clinics. 2018; 73(1): e756s. doi: 10.6061/clinics/2018/e756s.

10. Martins-Filho SN, Almeida MQ, Soares I et al. Clinical impact of pathological features including the Ki-67 labeling index on diagnosis and prognosis of adult and pediatric adrenocortical tumors. Endocr Pathol. 2021; 32(2): 288–300. doi: 10.1007/s12022-020-09654-x.

11. Libe R, Borget I, Ronchi CL et al. Prognostic factors in stage III–IV adrenocortical carcinomas (ACC): An European Network for the Study of Adrenal Tumor (ENSAT) study. Ann Oncol. 2015; 26(10): 2119–25. doi: 10.1093/annonc/mdv329.

12. Vezzosi D, Do Cao C, Hescot S et al. Time until partial response in metastatic adrenocortical carcinoma long-term survivors. Horm Cancer. 2018; 9(1): 62–69. doi: 10.1007/s12672-017-0313-6.

13. Megerle F, Herrmann W, Schloetelburg W et al. Mitotane monotherapy in patients with advanced adrenocortical carcinoma. J Clin Endocrinol Metab. 2018; 103(4): 1686–95. doi: 10.1210/jc.2017-02591.

14. Henning JEK, Deutschbein T, Altieri B et al. Gemcitabine-based chemotherapy in adrenocortical carcinoma: A multicenter study of efficacy and predictive factors. J Clin Endocrinol Metab. 2017; 102(11): 4323–32. doi: 10.1210/jc.2017-01624.

15. Fassnacht M, Dekkers OM, Else T et al. European Society of Endocrinology clinical practice guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol. 2018; 179(4): G1–G46. doi: 10.1530/EJE-18-0608.

16. Vesely MD, Zhang T, Chen L. Resistance mechanisms to anti-PD cancer immunotherapy. Annu Rev Immunol. 2022; 40: 45–74. doi: 10.1146/annurev-immunol-070621-030155.

17. Habra MA, Stephen B, Campbell M et al. Phase II clinical trial of pembrolizumab efficacy and safety in advanced adrenocortical carcinoma. J Immunother Cancer. 2019; 7(1): 253. doi: 10.1186/s40425-019-0722-x.

18. Raj NP, Zheng Y, Kelly V et al. Efficacy and safety of pembrolizumab in patients with advanced adrenocortical carcinoma. J Clin Oncol. 2019; 37(15 Suppl): 4112. doi: 10.1200/JCO.2019.37.15_suppl.4112.

19. Carneiro BA, Konda B, Costa RB et al. Nivolumab in metastatic adrenocortical carcinoma: Results of a phase 2 trial. J Clin Endocrinol Metab. 2019; 104(11): 6193–200. doi: 10.1210/jc.2019-00600.

20. Le Tourneau C, Hoimes C, Zarwan C et al. Avelumab in patients with previously treated metastatic adrenocortical carcinoma: Phase 1b results from the JAVELIN solid tumor trial. J Immunother Cancer. 2018; 6(1): 111. doi: 10.1186/s40425-018-0424-9.

21. Murciano-Goroff YR, Warner AB, Wolchok JD. The future of cancer immunotherapy: Microenvironment-targeting combinations. Cell Res. 2020; 30(6): 507–19. doi: 10.1038/s41422-020-0337-2.

22. Thorsson V, Gibbs DL, Brown SD et al. The immune landscape of cancer. Immunity. 2018; 48(4): 812–30.e14. doi: 10.1016/j.immuni.2018.03.023.

23. Gundisch S, Boeckeler E, Behrends U et al. Glucocorticoids augment survival and proliferation of tumor cells. Anticancer Res. 2012; 32(10): 4251–61.

24. Landwehr LS, Altieri B, Schreiner J et al. Interplay between glucocorticoids and tumor-infiltrating lymphocytes on the prognosis of adrenocortical carcinoma. Immunother Cancer. 2020; 8(1): e000469. doi: 10.1136/jitc-2019-000469.

25. Huang R, Liu Z, Tian T et al. The construction and analysis of tumor-infiltrating immune cells and ceRNA networks in metastatic adrenal cortical carcinoma. Biosci Rep. 2020; 40(3): BSR20200049. doi: 10.1042/BSR20200049.

26. Li X, Gao Y, Xu Z et al. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med. 2020; 9(3): 1161–72. doi: 10.1002/cam4.2774.

27. Tian X, Xu W, Wang Y et al. Identification of tumor-infiltrating immune cells and prognostic validation of tumor-infiltrating mast cells in adrenocortical carcinoma: Results from bioinformatics and real-world data. OncoImmunology. 2020; 9(1): 1784529. doi: 10.1080/2162402X.2020.1784529.

28. Parise IZS, Parise GA, Noronha L et al. The prognostic role of CD8+ T lymphocytes in childhood adrenocortical carcinomas compared to Ki-67, PD-1, PD-L1, and the Weiss Score. Cancers (Basel). 2019; 11(11): 1730. doi: 10.3390/cancers11111730.

29. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006; 7(5): 335–46. doi: 10.1038/nrm1907.

30. Jardim DL, Goodman A, de Melo Gagliato D et al. The challenges of tumor mutational burden as an immunotherapy biomarker. Cancer Cell. 2021; 39(2): 154–73. doi: 10.1016/j.ccell.2020.10.001.

31. Cristescu R, Aurora-Garg D, Albright A et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: A pan-tumor retrospective analysis of participants with advanced solid tumors. J Immunother Cancer. 2022; 10(1): e003091. doi: 10.1136/jitc-2021-003091.

32. Luo G, Chen G, Chen P et al. Pan-cancer analysis of histone methyltransferase KMT2D with potential implications for prognosis and immunotherapy in human cancer. Comb Chem High Throughput Screen. 2022; 26(1): 83–92. doi: 10.2174/1386207325666220221092318.

33. Domenech M, Grau E, Solanes A et al. Characteristics of adrenocortical carcinoma associated with lynch syndrome. J Clin Endocrinol Metab. 2021; 106(2): 318–25. doi: 10.1210/clinem/dgaa833.


Review

For citations:


Pachuashvili N.V., Porubaeva E.E., Urusova L.S. Adrenocortical cancer: Prognosis, treatment and immune microenvironment. FOCUS. Endocrinology. 2024;5(4):35-39. (In Russ.) https://doi.org/10.62751/2713-0177-2024-5-4-17

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)