Preview

FOCUS. Endocrinology

Advanced search

Biochemical bases of the organoprotective properties of metformin

https://doi.org/10.62751/2713-0177-2024-5-1-08

Abstract

Metformin is recognized as the "gold standard" for the treatment of type 2 diabetes mellitus (DM2). Its hypoglycemic properties are realized by reducing insulin resistance, contributing to the utilization of glucose in liver cells, muscles and adipose tissue; suppression of gluconeogenesis in the liver. Due to the wide range of biochemical targets of its pharmacological action, the scientific community actively discusses the use of metformin as an organoprotective drug. Now, the beneficial effect of metformin on the course of neuropathy, diseases of the cardiovascular system, normalization of the composition and metabolic activity of the intestinal microbiota, the course of metabolically associated fatty liver disease has already been proven, the nephroprotective effect has also been proven, and the study of the anti-oncogenic properties of metformin continues. The number of publications devoted to research on the positive effects of metformin on various organs and systems is actively increasing, and data on the identification of new effects are regularly published. The purpose of this literature review is to analyze the pleiotropic effects of metformin at the level of biochemical interactions for a more detailed understanding of the principles of their implementation.

About the Authors

A. S. Teplova
Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Anna S.  Teplova –  assistant of the department of endocrinology medical faculty

Moscow



V. V. Titova
Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Victoria V.  Titova –  assistant of the department of endocrinology medical faculty

Moscow



A. I. Tenchurina
Federal State Autonomous Educational Institution of Higher Education «N.I. Pirogov Russian National Research Medical University» of the Ministry of Health of the Russian Federation
Russian Federation

Angelina I.  Tenchurina –  student of medical  faculty

Moscow



References

1. Journal of Cell Biology & Cell Metabolism. Nibedita Rath. Role of Metformin in Infection. Pub. date: Feb 03, 2020 DOI:10.24966/CBCM-1943/100019

2. A consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Medical Management of Hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy // Dabetes Care. — 2009. — Vol. 32. — P. 1-11.

3. Dedov I., Shestakova M., Mayorov A., Mokrysheva N., Andreeva E., Bezlepkina O., et al. 11th Edition. Diabetes mellitus. 2023;26(2S):1-157. (In Russ.) https://doi.org/10.14341/DM13042

4. Полубояринова И.В., Фадеев В.В. Новый взгляд на эффекты метформина // Терапия. - 2016. - №1. - C. 97-104.

5. Mel'nikova O.G. Britanskoe prospektivnoe issledovanie sakharnogo diabeta (UKPDS) - rezul'taty 30-letnego nablyudeniya bol'nykh sakharnym diabetom 2 tipa. Diabetes mellitus. 2008;11(4):91-92. https://doi.org/10.14341/2072-0351-5599

6. Nesti L, Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr Metab Cardiovasc Dis. 2017 Aug;27(8):657-669. doi: 10.1016/j.numecd.2017.04.009. Epub 2017 May 10. PMID: 28709719.

7. Русский медицинский журнал.Капелько В.И. Активные формы кислорода, антиоксиданты и профилактика заболеваний сердца. РМЖ. 2003;21:1185.

8. Apostolova, Nadezda et al. “Mechanisms of action of metformin in type 2 diabetes: Effects on mitochondria and leukocyte-endothelium interactions.” Redox biology vol. 34 (2020): 101517. doi:10.1016/j.redox.2020.101517

9. Надеев А.Д., and Гончаров Н.В.. "Активные формы кислорода в клетках сердечно-сосудистой системы" Комплексные проблемы сердечно-сосудистых заболеваний, no. 4, 2014, pp. 80-94.

10. Zhou, G et al. “Role of AMP-activated protein kinase in mechanism of metformin action.” The Journal of clinical investigation vol. 108,8 (2001): 1167-74. doi:10.1172/JCI13505

11. He L. Metformin and Systemic Metabolism. Trends Pharmacol Sci. 2020 Nov;41(11):868-881. doi: 10.1016/j.tips.2020.09.001. Epub 2020 Sep 28. PMID: 32994049; PMCID: PMC7572679.

12. Zhu X, Yan H, Xia M, et al. Metformin attenuates triglyceride accumulation in HepG2 cells through decreasing stearyl-coenzyme A desaturase 1 expression. Lipids Health Dis. 2018;17(1):114. Published 2018 May 14. doi:10.1186/s12944-018-0762-0

13. Dreval' A.V., Misnikova I.V., Trigolosova I.V., Tishenina R.S. Vliyanie metformina na uglevodnyy i lipidnyy obmen u bol'nykh sakharnym diabetom 2 tipa, ranee ne poluchavshikh medikamentoznuyu sakharosnizhayushchuyu terapiyu. Diabetes mellitus. 2008;11(3):50-53. (In Russ.) https://doi.org/10.14341/2072-0351-5361

14. Metformin and pioglitazone are effective in reducing the levels of leptin and omentin. Obesity and metabolism. 2013;10(1):61. (In Russ.) https://doi.org/10.14341/2071-8713-5078

15. Lord, S. R. et al. Integrated pharmacodynamic analysis identifies two metabolic adaption pathways to metformin in breast cancer. Cell Metab.https://doi.org/10.1016/j.cmet.2018.08.021(2018)

16. Cittadini A., Napoli R., Monti M.G. et al. Metformin prevents the development of chronic heart failure in the SHHF rat model. Diabetes. 2012;61(4):944–953. DOI: 10.2337/db11-1132.

17. Kuznetsov I.S., Serezhenkov V.A., Vanin A.F., Romantsova T.I. Влияние метформина на биодоступность оксида азота у пациентов с сахарным диабетом 2 типа. Ожирение и метаболизм. 2012;9(1):29-33. https://doi.org/10.14341/2071-8713-5053

18. Русский медицинский журнал. Вербовой А.Ф., Вербовая Н.И., Ламонова Т.В., Долгих Ю.А. Метформин: время расширять показания? РМЖ. 2021;

19. Sutkowska Edyta ,Fortuna Paulina ,Bernadetta Kałuża, Sutkowska Karolina, Jerzy Wisniewski, Prof A.G., (2021). Metformin has no impact on nitric oxide production in patients with pre-diabetes. Biomedicine & Pharmacotherapy. 140. 111773. 10.1016/j.biopha.2021.111773.

20. Moheet A., Mangia S., Seaquist E.R. Impact of diabetes on cognitive function and brain structure. Ann N YAcad Sci. 2015 Sep;1353:60-71. doi: 10.1111/nyas.12807. Epub 2015 JuL 1

21. Kotova O.V., Akarachkova E.S., Belyaev A.A. Neurological complications of diabetes mellitus. Meditsinskiy sovet = Medical Council. 2019;(9):40-44. (In Russ.) https://doi.org/10.21518/2079-701X-2019-9-40-44

22. Emily A B Gilbert, Jessica Livingston, Emilio Garcia Flores, Monoleena Khan, Harini Kandavel, Cindi M Morshead. Metformin treatment reduces inflammation, dysmyelination and disease severity in a mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis, 2023 Oct 26. https://pubmed.ncbi.nlm.nih.gov/37890574/

23. Bondarenko V.M. Inflammation and Neurodegenerative Changes in Development of the Chronic Pathology of the Central Nervous System. Medical Herald of the South of Russia. 2011;(4):3-7. (In Russ.)

24. Min J, Zheng H, Xia H, et al. Ruxolitinib attenuates microglial inflammatory response by inhibiting NF-κB/MAPK signaling pathway. Eur J Pharmacol. 2024;968:176403. doi:10.1016/j.ejphar.2024.

25. Hasanpour Dehkordi A, Abbaszadeh A, Mir S, Hasanvand A. Metformin and its anti-inflammatory and anti-oxidative effects; new concepts. J Renal Inj Prev. 2019;8(1):54-61. DOI: 10.15171/jrip.2019.11.

26. Mohamed Eldosoky, Mohamed El-Shafey, Mohamed El-Mesery, Amr N. Ali, Khaled M. Abbas, Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy 11 October 2018 https://doi.org/10.1139/cjpp-2018-0266

27. Motavkin P.A., Dudina Yu.V. MORPHOLOGICAL AND BIOCHEMICAL ASPECTS OF APOPTOSIS IN CASE OF TEMPORAL LOBE EPILEPSY IN ADULTS AND ANIMALS. Pacific Medical Journal. 2010;(1):8-12. (In Russ.)

28. Ning P, Luo A, Mu X, Xu Y, Li T. Exploring the dual character of metformin in Alzheimer's disease. Neuropharmacology. 2022;207:108966. doi:10.1016/j.neuropharm.2022.108966

29. Ou Z, Kong X, Sun X, et al. Metformin treatment prevents amyloid plaque deposition and memory impairment in APP/PS1 mice. Brain Behav Immun. 2018;69:351-363. doi:10.1016/j.bbi.2017.12.009

30. Lobzin V.Yu., Kolmakova K.A., Emelin A.Yu. A novel view on Alzheimer’s disease pathogenesis: modern conceptof amyloid clearance. V.M. BEKHTEREV REVIEW OF PSYCHIATRY AND MEDICAL PSYCHOLOGY. 2018;(2):22-28. (In Russ.) https://doi.org/10.31363/2313-7053-2018-2-22-28

31. Kuznetsov K.O., Safina E.R., Gaimakova D.V., Frolova Ya.S., Oganesyan I.Yu., Sadertdinova A.G., Nazmieva K.A., Islamgulov A.H., Karimova A.R., Galimova A.M., Rizvanova E.V. Metformin and malignant neoplasms: a possible mechanism of antitumor action and prospects for use in practice. Problems of Endocrinology. 2022;68(5):45-55. (In Russ.) https://doi.org/10.14341/probl13097

32. Klein AP. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol. 2021;18(7):493-502. doi:10.1038/s41575-021-00457-x

33. Hardefeldt PJ, Edirimanne S, Eslick GD. Diabetes increases the risk of breast cancer: a meta-analysis. Endocr Relat Cancer. 2012;19(6):793-803. https://doi.org/10.1530/ERC-12-0242

34. Zhou XH, Qiao Q, Zethelius B, et al. DECODE Study Group. Diabetes, prediabetes and cancer mortality. Diabetologia. 2010;53(9):1867-1876. https://doi.org/10.1007/s00125-010-1796-7

35. Sharafutdinova K.I., Shlyapina V.S., Baeva A.I., Timurshin A.A., Sabanaeva I.E., Nakieva A.G., Kalashnikova M.F., Khabibov M.N. Diabetes mellitus and the female reproductive system tumors. Problems of Endocrinology. 2023;69(3):103-110. (In Russ.) https://doi.org/10.14341/probl13282

36. Krasil'nikov M.A., Zhukov N.V. Signal'nyy put' mTOR:novaya mishen' terapii opukholey // Journal of Modern Oncology. - 2010. - Vol. 12. - N. 2. - P. 9-16.

37. Mkrtumyan A.M., Markova T.N., Ovchinnikova M.A., Ivanova I.A., Kuzmenko K.V. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. Diabetes mellitus. 2023;26(6):585-595. (In Russ.) https://doi.org/10.14341/DM13044

38. YShi Y, He Z, Jia Z, Xu C. Inhibitory effect of metformin combined with gemcitabine on pancreatic cancer cells in vitro and in vivo. Mol Med Rep. 2016;14(4):2921-2928. https://doi.org/10.3892/mmr.2016.5592.

39. Guang-Yue Li et al. Metformin enhances T lymphocyte anti-tumor immunity by increasing the infiltration via vessel normalization.. European journal of pharmacology, 944: 175592 - 175592 . doi: 10.1016/j.ejphar.2023.175592

40. Philip, M., Schietinger, A. CD8+ T cell differentiation and dysfunction in cancer. Nat Rev Immunol 22, 209–223 (2022). https://doi.org/10.1038/s41577-021-00574-3

41. Pauken, K.E. and Wherry, E.J. (2015) Overcoming T Cell Exhaustion in Infection and Cancer. Trends in Immunology, 36, 265-276.https://doi.org/10.1016/j.it.2015.02.008

42. Peng, Qingjie et al. “Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis.” Frontiers in endocrinology vol. 14 1070264. 23 Jan. 2023, doi:10.3389/fendo.2023.1070264


Supplementary files

Review

For citations:


Teplova A.S., Titova V.V., Tenchurina A.I. Biochemical bases of the organoprotective properties of metformin. FOCUS. Endocrinology. 2024;5(1):59-64. (In Russ.) https://doi.org/10.62751/2713-0177-2024-5-1-08

Views: 286


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)