Preview

FOCUS. Endocrinology

Advanced search

The interplay of metabolically associated fatty liver disease and carbohydrate metabolism disorders: Current understanding of pathogenesis and treatment

https://doi.org/10.62751/2713-0177-2024-5-3-08

Abstract

Metabolic-associated fatty liver disease (MAFLD) is a chronic, non-infectious condition associated with metabolic disorders, including type 2 diabetes mellitus. This review describes current understanding of the MAFLD pathogenesis and its relationship to impaired carbohydrate metabolism, particularly the role of insulin resistance, dysregulated autophagy, and other factors contributing to disease development. Furthermore, it analyzes existing therapeutic approaches to MAFLD management, including the use of ursodeoxycholic acid as an autophagy modulator, as well as various glucose-lowering medications, such as glucagon-like peptide-1 receptor agonists, sodium-glucose cotransporter 2 inhibitors, and thiazolidinediones. Additionally, the pathogenetic role of fibroblast growth factor-21 in MAFLD development and the potential clinical application of FGF-21-based therapies are described. Thus, this overview reflects current knowledge regarding the pathogenesis and treatment of MAFLD, highlighting the necessity of a comprehensive approach to managing this condition in the context of its strong association with impaired carbohydrate metabolism.

About the Authors

A. V. Murasheva
Almazov National Medical Research Centre
Russian Federation

Anna V. Murasheva, MD, C. Sci. (Med.), senior researcher, ass. prof.

Saint Petersburg



A. A. Mikhailova
Almazov National Medical Research Centre
Russian Federation

Arina A. Mikhailova, MD, junior researcher, PhD student

Saint Petersburg



K. A. Pogosian
Almazov National Medical Research Centre
Russian Federation

Karina A. Pogosian, MD, junior researcher

Saint Petersburg



K. A. Golovatyuk
Almazov National Medical Research Centre
Russian Federation

Ksenia A. Golovatyuk, MD, junior researcher

Saint Petersburg



O. S. Fuks
Almazov National Medical Research Centre
Russian Federation

Oksana S. Fuks, MD, junior researcher, PhD student

Saint Petersburg



T. L. Karonova
Almazov National Medical Research Centre
Russian Federation

Tatiana L. Karonova, MD, D. Sci. (Med.), chief researcher at Clinical Endocrinology Laboratory

Saint Petersburg



References

1. Powell E.E., Wong V.W., Rinella M. Non-alcoholic fatty liver disease. Lancet. 2021;397(10290):2212-2224. doi:10.1016/S0140-6736(20)32511-3.

2. Киселева Е.В., Демидова Т.Ю. Неалкогольная жировая болезнь печени и сахарный диабет 2 типа: проблема сопряженности и этапности развития//Ожирение и метаболизм. 2021. Т.18№3. С.313-319. [Kiseleva E.V., Demidova T.Yu. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the problem of conjunction and phasing. Obesity and metabolism. 2021;18(3):313-319. (In Russ.)]. doi.org/10.14341/omet12758.

3. Kanwal F., Neuschwander-Tetri B.A., Loomba R., Rinella M.E. Metabolic dysfunction-associated steatotic liver disease: Update and impact of new nomenclature on the American Association for the Study of Liver Diseases practice guidance on nonalcoholic fatty liver disease. Hepatology. 2024;79(5):1212-1219. doi:10.1097/HEP.0000000000000670.

4. Lonardo A., Lugari S., Ballestri S., et al. A round trip from nonalcoholic fatty liver disease to diabetes: molecular targets to the rescue?. Acta Diabetol. 2019;56(4):385-396. doi:10.1007/s00592-018-1266-0 5.

5. Xia M.F., Bian H., Gao X. NAFLD and Diabetes: Two Sides of the Same Coin? Rationale for Gene-Based Personalized NAFLD Treatment. Front Pharmacol. 2019;10:877. doi.org/10.3389/fphar.2019.00877. 6.

6. Ng C.H., Chan K.E., Chin Y.H., et al. The effect of diabetes and prediabetes on the prevalence, complications and mortality in nonalcoholic fatty liver disease. Clin Mol Hepatol. 2022;28(3):565-574. doi.org/10.3350/cmh.2022.0096.

7. Zelber-Sagi S., Lotan R., Shibolet O., Webb M., Buch A., Nitzan-Kaluski D., Halpern Z., Santo E., Oren R. Non-alcoholic fatty liver disease independently predicts prediabetes during a 7-year prospective follow-up. Liver Int. 2013;33(9):1406-1412. doi.org/10.1111/liv.12200 8.

8. Lee J., Cho Y.K., Kang Y.M., Kim H.S., Jung C.H., Kim H.K., Park J.Y., Lee W.J. The Impact of NAFLD and Waist Circumference Changes on Diabetes Development in Prediabetes Subjects. Sci Rep. 2019;9(1):17258. doi.org/10.1038/s41598-019-53947-z 9.

9. Gastaldelli A., Cusi K. From NASH to diabetes and from diabetes to NASH: Mechanisms and treatment options. JHEP Rep. 2019;1(4):312-328. doi.org/10.1016/j.jhepr.2019.07.002 10.

10. Mei S., Ni H.M., Manley S., et al. Differential roles of unsaturated and saturated fatty acids on autophagy and apoptosis in hepatocytes. J Pharmacol Exp Ther. 2011;339(2):487-98. doi.org/10.1124/jpet.111.184341 11.

11. Parry S.A., Rosqvist F., Mozes F.E., et al. Intrahepatic fat and postprandial glycemia increase after consumption of a diet enriched in saturated fat compared with free sugars. Diabetes Care. 2020;43:1134-41. doi.org/10.2337/dc19-2331 12.

12. Jakubek P., Pakula B., Rossmeisl M., et al. Autophagy alterations in obesity, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease: the evidence from human studies. Intern Emerg Med.2024;19(5):1473-1491. doi.org/10.1007/s11739-024-03700-w 13.

13. Bhattacharya D., Mukhopadhyay M., Bhattacharyya M., Karmakar P. Is autophagy associated with diabetes mellitus and its complications? A review. EXCLI J. 2018;17:709-720. doi.org/10.17179/excli2018-1353 14.

14. da Cruz L.L., Vesentini G., Sinzato Y.K., et al. Effects of high-fat diet-induced diabetes on autophagy in the murine liver: A systematic review and meta-analysis. Life Sci. 2022;309:121012. doi.org/10.1016/j.lfs.2022.121012 15.

15. Raptis D.D., Mantzoros C.S., Polyzos S.A. Fibroblast growth factor-21 as a potential therapeutic target of nonalcoholic fatty liver disease. Therapeutics and Clinical Risk Management.2023;19:77-96. doi:10.2147/TCRM.S352008.

16. Tucker B., Li H., Long X., et al. Fibroblast growth factor 21 in non-alcoholic fatty liver disease. Metabolism. 2019;101:153994. doi:10.1016/j.metabol.2019.153994 17.

17. Tanaka N., Takahashi S., Zhang Y., et al. Role of fibroblast growth factor 21 in the early stage of NASH induced by methionine- and choline-deficient diet. Biochim Biophys Acta. 2015;1852(7):1242-1252. doi:10.1016/j.bbadis.2015.02.012.

18. Каронова Т.Л., Головатюк К.А., Михайлова А.А. с соавт. Результаты третьего этапа первого российского многоцентрового неинтервенционного регистрового исследования по изучению частоты дефицита и недостаточности витамина D в Российской Федерации у взрослых//Остеопороз и остеопатии. 2023. Т.26№1. С.13-23. [Karonova T.L., Golovatyuk K.A., Mikhaylova A.A., Suplotova L.A., Troshina E.A., Rozhinskaya L.Ya. The first Russian multicenter non-interventional registry Phase III Study of vitamin D deficiency and insufficiency prevalence among adults in Russian Federation. Osteoporosis and Bone Diseases. 2023;26(1):13-23. (In Russ.)]. doi.org/10.14341/osteo12964.

19. Barchetta I., Cimini F.A., Cavallo M.G. Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients. 2020; 12(11): 3302. doi.org/10.3390/nu12113302.

20. Pinyopornpanish K., Leerapun A., Pinyopornpanish K., Chattipakorn N. Effects of Metformin on Hepatic Steatosis in Adults with Nonalcoholic Fatty Liver Disease and Diabetes: Insights from the Cellular to Patient Levels. Gut Liver. 2021;15(6):827-840. doi: 10.5009/gnl20367.

21. Zachou M., Flevari P., Nasiri-Ansari N. et al. The role of anti-diabetic drugs in NAFLD. Have we found the Holy Grail? A narrative review. Eur J Clin Pharmacol. 2024;80(1):127-150. doi.org/10.1007/500228-023-03586-1.

22. Giugliano D., Scappaticcio L., Longo M., et al. GLP-1 receptor agonists vs. SGLT-2 inhibitors: the gap seems to be leveling off. Cardiovasc Diabetol. 202;20(1):205. doi:10.1186/s12933-021-01400-9.

23. Mantovani A., Petracca G., Csermely A., et al. Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Metabolites. 2020;11(1):22. doi:10.3390/metabo11010022.

24. Dokmak A., Almeqdadi M., Trivedi H., Krishnan S. Rise of sodium-glucose cotransporter 2 inhibitors in the management of nonalcoholic fatty liver disease. World J Hepatol. 2019;11(7):562-573. doi:10.4254/wjh.v11.i7.562.

25. Mantovani A., Petracca G., Csermely A., et al. Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials. Metabolites. 2020;11(1):22. doi:10.3390/metabo11010022.

26. Newsome P.N., Buchholtz K., Cusi K., et al. A Placebo-Controlled Trial of Subcutaneous Semaglutide in Nonalcoholic Steatohepatitis. N Engl J Med. 2021;384(12):1113-1124. doi:10.1056/NEJMoa2028395.

27. Abdelmalek M.F., Armstrong M.J. Semaglutide 2•4 mg once weekly in patients with non-alcoholic steatohepatitis-related cirrhosis: a randomised, placebo-controlled phase 2 trial. Lancet Gastroenterol Hepatol. 2023;8(6):511-522. doi:10.1016/S2468-1253(23)00068-7.

28. Ивашкин В.Т., Маевская М.В., Жаркова М.С. и соавт. Клинические рекомендации Российского общества по изучению печени, Российской гастроэнтерологической ассоциации, Российской ассоциации эндокринологов, Российской ассоциации геронтологов и гериатров и Национального общества профилактической кардиологии по диагностике и лечению неалкогольной жировой болезни печени// Российский журнал гастроэнтерологии, гепатологии, колопроктологии. 2022. Т.32№4. С.104-140. [Ivashkin V.T., Lapina T.L., Maev I.V. et al. Clinical Practice Guidelines of Russian Gastroenterological Association, Scientific Society for the Clinical Study of Human Microbiome, Russian Society for the Prevention of Non-Communicable Diseases, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy for H. pylori Diagnostics and Treatment in Adults. Russian Journal of Gastroenterology, Hepatology, Coloproctology. 2022;32(6):72-93. (In Russ.)]. doi:10.22416/1382-4376-2022-32-4-104-140.

29. Panzitt K., Fickert P., Wagner M. Regulation of autophagy by bile acids and in cholestasis - CholestoPHAGY or CholeSTOPagy. Biochim Biophys Acta Mol Basis Dis. 2021;1867(2):166017. doi:10.1016/j.bbadis.2020.166017.

30. Wu P., Zhao J., Guo Y. Ursodeoxycholic acid alleviates nonalcoholic fatty liver disease by inhibiting apoptosis and improving autophagy via activating AMPK. Biochem Biophys Res Commun. 2020;529(3):834-838. doi:10.1016/j.bbrc.2020.05.128.

31. Nadinskaia M., Maevskaya M., Ivashkin V., et al. Ursodeoxycholic acid as a means of preventing atherosclerosis, steatosis and liver fibrosis in patients with nonalcoholic fatty liver disease. World J Gastroenterol. 2021; 27(10): 959-975. doi:10.3748/wjg.v27.i10.959.

32. Пирогова И.Ю., Яковлева С.В., Неуймина Т.В. с соавт. Плейотропные эффекты урсодезоксихолевой кислоты при неалкогольной жировой болезни печени и метаболическом синдроме // Consilium Medicum. 2019. Т.21№8. С.65-70. [Pirogova I.U., Yakovleva S.V., Neuimina T.V. Pleiotropic effects of ursodeoxycholic acid in non-alcoholic fatty liver disease and metabolic syndrome. Consilium Medicum. 2019; 21(8): 65–70. (In Russ.)]. doi:10.18565/therapy.2024.4suppl.354-375.

33. Elhini S.H., Wahsh E.A., Elberry A.A., et al. The Impact of an SGLT2 Inhibitor versus Ursodeoxycholic Acid on Liver Steatosis in Diabetic Patients. Pharmaceuticals (Basel). 2022;15(12):1516. doi:10.3390/ph15121516.

34. Марцевич С.Ю., Кутишенко Н.П., Дроздова Л.Ю. с соавт. Исследование РАКУРС: повышение эффективности и безопасности терапии статинами у больных с заболеваниями печени, желчного пузыря и/или желчевыводящих путей с помощью урсодеоксихолевой кислоты // Тер. архив. 2014. Т.86№12. С.48-52. [Martsevich S.I., Kutishenko N.P., Drozdova L.I., et al. Ursodeoxycholic acid-enhanced efficiency and safety of statin therapy in patients with liver, gallbladder, and/or biliary tract diseases: The RACURS study // Terapevticheskii arkhiv. 2014;86(12): 48-52. (In Russ.)]. doi:10.17116/terarkh2014861248-52.

35. Sánchez-García A., Sahebkar A., Simental-Mendía M., Simental-Mendía L.E. Effect of ursodeoxycholic acid on glycemic markers: A systematic review and meta-analysis of clinical trials. Pharmacol Res. 2018;135:144-149. doi:10.1016/j.phrs.2018.08.008.

36. Filtz A, Parihar S, Greenberg GS, Park CM, Scotti A, Lorenzatti D, Badimon JJ, Soffer DE, Toth PP, Lavie CJ, Bittner V, Virani SS, Slipczuk L. New approaches to triglyceride reduction: Is there any hope left? Am J Prev Cardiol. 2024;18:100648. doi: 10.1016/j.ajpc.2024.100648.

37. Bhatt DL, Bays HE, Miller M, et al. The FGF21 analog pegozafermin in severe hypertriglyceridemia: a randomized phase 2 trial. Nat Med. 2023;29(7):1782-1792. doi:10.1038/s41591-023-02427-z.

38. ClinicalTrials.gov registration: NCT0441186. Research Study on Whether a Combination of 2 Medicines (NNC0194 0499 and Semaglutide) Works in People With Non-alcoholic Steatohepatitis (NASH); ClinicalTrials.gov ID NCT05016882. Доступно на: https://clinicaltrials.gov/study/NCT05016882.


Supplementary files

Review

For citations:


Murasheva A.V., Mikhailova A.A., Pogosian K.A., Golovatyuk K.A., Fuks O.S., Karonova T.L. The interplay of metabolically associated fatty liver disease and carbohydrate metabolism disorders: Current understanding of pathogenesis and treatment. FOCUS. Endocrinology. 2024;5(3):64-71. (In Russ.) https://doi.org/10.62751/2713-0177-2024-5-3-08

Views: 122


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)