Preview

FOCUS. Endocrinology

Advanced search

Ultrasonic conductivity of the skull bones as a factor limiting the performance of operations using focused ultrasound in central nervous system diseases: Endocrinologist's view

https://doi.org/10.62751/2713-0177-2025-6-1-04

Abstract

Magnetic resonance focused ultrasound therapy is a noninvasive method for treating central nervous system diseases such as Parkinson's disease, essential tremor, and dystonia. The method is limited by poor ultrasound conductivity of the cranial bones. The objective of this review is to study the relationship between phosphorus-calcium metabolism and cranial bone density. A literature review has shown that patients with the diseases of central nervous system often have vitamin D deficiency, parathyroid diseases, and osteoporosis. The main parameters of ultrasound conductivity of the cranial bones depend on the density, thickness, and homogeneity of the bones, in the formation of which phosphorus-calcium metabolism is involved. The use of bisphosphonates, such as alendronate, to increase bone density and remove limitations for focused ultrasound is promising.

About the Authors

G. M. Sakharova
International Medical Center named after V.S. Buzaev
Russian Federation

Guzaliya M. Sakharova – endocrinologist

Ufa



R. M. Galimova
International Medical Center named after V.S. Buzaev
Russian Federation

Rezida M. Galimova – MD, PhD, associate professor of the Department of neurosurgery and medical rehabilitation with the course of additional professional education of the Bashkir State Medical University of the Ministry of Health of the Russian Federation, neurosurgeon, chief physician, V.S. Buzaev International Medical Center

Ufa



A. N. Khatmullina
International Medical Center named after V.S. Buzaev
Russian Federation

Alsu N. Khatmullina – neurologist

Ufa



D. I. Nabiullina
International Medical Center named after V.S. Buzaev
Russian Federation

Dinara I. Nabiullina- MD, PhD, neurologist

Ufa



A. A. Bikbulatova
International Medical Center named after V.S. Buzaev
Russian Federation

Alina A. Bikbulatova – resident radiologist of the Department of general surgery, radiation diagnostics and transplantology

Ufa



I. V. Buzaev
International Medical Center named after V.S. Buzaev; Bashkir State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Igor V. Buzaev – MD, Professor of the Department of hospital surgery, Bashkir State Medical University of the Russian Ministry of Health, cardiovascular surgeon, business development director, V.S. Buzaev International Medical Center

Ufa



D. Sh. Avzaletdinova
Bashkir State Medical University of the Ministry of Health of the Russian Federation
Russian Federation

Diana Sh. Avzaletdinova – MD, Professor, Department of endocrinology

Ufa



References

1. Галимова Р.М., Кузнецов А.В., Иванова Е.С. с соавт. Первый опыт проведения таламотомии методом фокусированного ультразвука под контролем магнитно-резонансной томографии в России. Бюллетень Национального общества по изучению болезни Паркинсона и расстройств движений. 2022; (1): 3–8. doi: 10.22416/1382-4376-2022-29-1-3-8.

2. Jolesz FA. MRI-guided focused ultrasound surgery. Annu Rev Med. 2009; 60: 417–30. doi: 10.1146/annurev.med.60.041707.170303.

3. Bitton RR, Sheingaouz E, Assif B et al. Evaluation of an MRI receive head coil for use in transcranial MR guided focused ultrasound for functional neurosurgery. Int J Hyperthermia. 2021; 38(1): 22–29. doi: 10.1080/02656736.2020.1867242.

4. Литвиненко И.В., Красаков И.В. С чего начинать терапию ранних стадий болезни Паркинсона? Нервные болезни. 2023; (3): 69–72. doi:10.22416/1382-4376-2023-29-3-69-72.

5. Ибрагимова Р.Э. Современный подход в лечении эссенциального тремора. Международный журнал гуманитарных и естественных наук. 2021; (4–2): 139–142. doi: 10.22416/1382-4376-2021-29-4-2-139-142.

6. Набиуллина Д.И., Галимова Р.М., Иллариошкин С.Н. с соавт. Опыт поэтапной и одномоментной двусторонней таламотомии методом фокусированного ультразвука под контролем магнитно-резонансной томографии в лечении эссенциального тремора. Журнал неврологии и психиатрии им. С.С. Корсакова. 2023; 123(7): 65-73. doi: 10.17116/jnevro202312307165.

7. Галимова Р.М., Набиуллина Д.И., Иллариошкин С.Н. с соавт. Первый в России опыт лечения пациентов с эссенциальным тремором методом фокусированного ультразвука под контролем МРТ. Анналы клинической и экспериментальной неврологии. 2022; 16(2): 5–14. doi: 10.54101/ACEN.2022.2.1.

8. Zhang J, Yan R, Cui Y et al. Treatment for essential tremor: A systematic review and Bayesian model-based network meta-analysis of RCTs. EClinicalMedicine. 2024; 77: 102889. doi: 10.1016/j.eclinm.2024.102889.

9. Vetkas A, Boutet A, Sarica C et al. Successful magnetic resonance-guided focused ultrasound treatment of tremor in patients with a skull density ratio of 0.4 or less. J Neurosurg. 2023; 140(3): 639–47. doi: 10.3171/2023.6.JNS23171.

10. Маганева И.С., Пигарова Е.А., Шульпекова Н.В. с соавт. Оценка фосфорно-кальциевого обмена и метаболитов витамина D у пациентов с первичным гиперпаратиреозом на фоне болюсной терапии колекальциферолом. Проблемы эндокринологии. 2021; 67(6): 68–79. doi: 10.22416/1382-4376-2021-29-6-68-79.

11. Boutet A, Gwun D, Gramer R et al. The relevance of skull density ratio in selecting candidates for transcranial MR-guided focused ultrasound. J Neurosurg. 2019; 132(6): 1785–91. doi: 10.3171/2019.2.JNS182571.

12. Hino S, Maki F, Yamaguchi T et al. Effectiveness and safety of MR-guided focused ultrasound thalamotomy in patients with essential tremor and low skull density ratio: A study of 101 cases. J Neurosurg. 2024; 141(1): 212–20. doi: 10.3171/2023.11.JNS231799.

13. Baek H, Lockwood D, Mason EJ et al. Clinical intervention using focused ultrasound (FUS) stimulation of the brain in diverse neurological disorders. Front Neurol. 2022; 13: 880814. doi: 10.3389/fneur.2022.880814.

14. Jung NY, Rachmilevitch I, Sibiger O et al. Factors related to successful energy transmission of focused ultrasound through a skull: A Study in human cadavers and its comparison with clinical experiences. J Korean Neurosurg Soc. 2019; 62(6): 712–22. doi: 10.3340/jkns.2018.0226.

15. Kong C, Park SH, Shin J et al. Factors associated with energy efficiency of focused ultrasound through the skull: A study of 3D-printed skull phantoms and its comparison with clinical experiences. Front Bioeng Biotechnol. 2021; 9: 783048. doi: 10.3389/fbioe.2021.783048.

16. Soto-Pedre E, Newey PJ, Leese GP. Stable incidence and increasing prevalence of primary hyperparathyroidism in a population-based study in Scotland. J Clin Endocrinol Metab. 2023; 108(10): e1117–24. doi: 10.1210/clinem/dgad201.

17. Bilezikian JP, Khan AA, Silverberg SJ et al.; International Workshop on Primary Hyperparathyroidism. Evaluation and management of primary hyperparathyroidism: Summary statement and guidelines from the Fifth International Workshop. J Bone Miner Res. 2022; 37(11): 2293–314. doi: 10.1002/jbmr.4677.

18. Mokrysheva NG, Eremkina AK, Elfimova AR et al. The Russian registry of primary hyperparathyroidism, latest update. Front Endocrinol (Lausanne). 2023; 14: 1203437. doi: 10.3389/fendo.2023.1203437.

19. Bilezikian JP. Hypoparathyroidism. J Clin Endocrinol Metab. 2020; 105(6): 1722–36. doi: 10.1210/clinem/dgaa113.

20. Khan AA, AbuAlrob H, Punthakee Z et al. Canadian national hypoparathyroidism registry: An overview of hypoparathyroidism in Canada. Endocrine. 2021; 72(2): 553–61. doi: 10.1007/s12020-021-02629-w.

21. Amrein K, Scherkl M, Hoffmann M et al. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur J Clin Nutr. 2020; 74(11): 1498–513. doi: 10.1038/s41430-020-0558-y.

22. Pludowski P, Takacs I, Boyanov M et al. Clinical practice in the prevention, diagnosis and treatment of vitamin D deficiency: A Central and Eastern European Expert Consensus Statement. Nutrients. 2022; 14(7): 1483. doi: 10.3390/nu14071483.

23. Каронова Т.Л., Головатюк К.А., Михайлова А.А. с соавт. Результаты третьего этапа первого российского многоцентрового неинтервенционного регистрового исследования по изучению частоты дефицита и недостаточности витамина D в Российской Федерации у взрослых. Остеопороз и остеопатии. 2023; 26(1): 13–23. doi: 10.14341/osteo12964.

24. Белая Ж.Е., Белова К.Ю., Бирюкова Е.В. с соавт. Федеральные клинические рекомендации по диагностике, лечению и профилактике остеопороза. Остеопороз и остеопатии. 2021; 24(2): 4–47. doi: 10.14341/osteo12930

25. Morin SN, Feldman S, Funnell Let al.; Osteoporosis Canada 2023 Guideline Update Group. Clinical practice guideline for management of osteoporosis and fracture prevention in Canada: 2023 update. CMAJ. 2023; 195(39): E1333–48. doi: 10.1503/cmaj.221647.

26. Lv L, Zhang H, Tan X et al. Assessing the effects of Vitamin D on neural network function in patients with Parkinson's disease by measuring the fraction amplitude of low-frequency fluctuation. Front Aging Neurosci. 2021; 13: 763947. doi: 10.3389/fnagi.2021.763947.

27. Barichella M, Cereda E, Iorio L et al. Clinical correlates of serum 25-hydroxyvitamin D in Parkinson's disease. Nutr Neurosci. 2022; 25(6): 1128–36. doi: 10.1080/1028415X.2020.1840117.

28. Ames BN, Grant WB, Willett WC. Does the high prevalence of vitamin d deficiency in African Americans contribute to health disparities? Nutrients. 2021; 13(2): 499. doi: 10.3390/nu13020499.

29. Mohammadi S, Dolatshahi M, Rahmani F. Shedding light on thyroid hormone disorders and Parkinson disease pathology: mechanisms and risk factors. J Endocrinol Invest. 2021; 44(1): 1–13. doi: 10.1007/s40618-020-01314-5.

30. Fullard ME, Duda JE. A review of the relationship between vitamin D and Parkinson disease symptoms. Front Neurol. 2020; 11: 454. doi: 10.3389/fneur.2020.00454.

31. Santos-Lobato BL, Gardinassi LG, Bortolanza M et al. Metabolic profile in plasma and CSF of levodopa-induced dyskinesia in Parkinson's disease: Focus on neuroinflammation. Mol Neurobiol. 2022; 59(2): 1140–50. doi: 10.1007/s12035-021-02625-1.

32. Homann CN, Ivanic G, Homann B, Purkart TU. Vitamin D and hyperkinetic movement disorders: A systematic review. Tremor Other Hyperkinet Mov (N Y). 2020; 10: 32. doi: 10.5334/tohm.74.

33. Siniscalchi A, De Arro G, Michniewicz A, Gallelli L. Conventional and new antiepileptic drugs on vitamin D and bone health: What we know to date? Curr Clin Pharmacol. 2016; 11(1): 69–70. doi: 10.2174/157488471101160204121835.

34. Sailike B, Onzhanova Z, Akbay B et al. Vitamin D in central nervous system: Implications for neurological disorders. Int J Mol Sci. 2024; 25(14): 7809. doi: 10.3390/ijms25147809.

35. Ершова О.Б. Применение алендроната в терапии остеопороза. Медицинский совет. 2019; (21): 142–146. doi: 10.21518/2079-701X-2019- 21-142-146.

36. Hedvicakova V, Zizkova R, Buzgo M et al. The effect of alendronate on osteoclastogenesis in different combinations of M-CSF and RANKL growth factors. Biomolecules. 2021; 11(3): 438. doi: 10.3390/biom11030438.

37. Rogers MJ, Monkkonen J, Munoz MA. Molecular mechanisms of action of bisphosphonates and new insights into their effects outside the skeleton. Bone. 2020; 139: 115493. doi: 10.1016/j.bone.2020.115493.


Review

For citations:


Sakharova G.M., Galimova R.M., Khatmullina A.N., Nabiullina D.I., Bikbulatova A.A., Buzaev I.V., Avzaletdinova D.Sh. Ultrasonic conductivity of the skull bones as a factor limiting the performance of operations using focused ultrasound in central nervous system diseases: Endocrinologist's view. FOCUS. Endocrinology. 2025;6(1):31-36. (In Russ.) https://doi.org/10.62751/2713-0177-2025-6-1-04

Views: 73


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)