Preview

FOCUS. Endocrinology

Advanced search

Cerebral disorders and diabetes mellitus: Central effects of sodium-glucose co-transporter inhibitors

https://doi.org/10.62751/2713-0177-2025-6-4-07

Abstract

Diabetes mellitus (DM) is associated with an increased risk of cerebral circulatory disorders and a worse stroke outcome, and is also characterized by a high incidence of cognitive impairment (CI). The vulnerability of the brain to metabolic and vascular damaging factors accompanying the course of diabetes determines the need to understand the mechanisms of the pathological process in conditions of comorbidity, to search for and implement measures of cerebroprotection.DM treatment includes lifestyle modification, glycemic control, and optimization of other risk factors for cardiovascular diseases. Intensification of glycemic control makes it possible to reduce the risk of microvascular diabetic complications, but it has not proven effective in preventing vascular diseases of the brain and heart failure. The newest class of antihyperglycemic drugs, sodium–glucose cotransporter-2 (SGLT-2) inhibitors, has taken a strong place in the treatment of type 2 diabetes (DM2). There is increasing evidence that the use of SGLT-2 inhibitors can reduce the risk of stroke in patients with T2DM, as well as contribute to the preservation of cognitive functions.

About the Authors

K. V. Antonova
Russian Center of Neurology and Neurosciences
Russian Federation

Kseniya V. Antonova – D. Sci. (Med.), endocrinologist, leading researcher at the 1st Neurological Department

Moscow



A. ­ A. Panina
Russian Center of Neurology and Neurosciences
Russian Federation

Anastasia A. Panina – neurologist, postgraduate student of the 1st Neurological Department

Moscow



O. V. Lagoda
Russian Center of Neurology and Neurosciences
Russian Federation

Olga V. Lagoda – C. Sci. (Med.), neurologist of the highest category, senior researcher at the 1st Neurological Department

Moscow



E. P. Shukina
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Elena P. Shchukina – C. Sci. (Med.), assistant at the Department of psychiatry and narcology

Moscow



S. A. Weber
I.M. Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Sofya A. Weber – 2nd year resident, Department of psychiatry and narcology, N.V. Sklifosovsky Institute of Clinical Medicine

Moscow



References

1. Танашян М.М., Антонова К.В. Цереброметаболическое здоровье. Анналы клинической и экспериментальной неврологии. 2025;19(2):62–73. doi: 10.17816/ACEN.1359.

2. GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet Neurol. 2024;23(10):973–1003. doi: 10.1016/S1474-4422(24)00369-7.

3. Emerging Risk Factors Collaboration; Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di Angelantonio E et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative metaanalysis of 102 prospective studies. Lancet. 2010;375(9733):2215–22. doi: 10.1016/S0140-6736(10)60484-9.

4. Mosenzon O, Cheng AY, Rabinstein AA, Sacco S. Diabetes and stroke: What are the connections? J Stroke. 2023;25(1):26–38. doi: 10.5853/jos.2022.02306.

5. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: Clinical insights and vascular mechanisms. Can J Cardiol. 2018;34(5):575–84. doi: 10.1016/j.cjca.2017.12.005.

6. Gudala K, Bansal D, Schifano F, Bhansali A. Diabetes mellitus and risk of dementia: A meta-analysis of prospective observational studies. J Diabetes Investig. 2013;4(6):640–50. doi: 10.1111/jdi.12087.

7. You Y, Liu Z, Chen Y, Xu Y, Qin J, Guo S et al. The prevalence of mild cognitive impairment in type 2 diabetes mellitus patients: A systematic review and metaanalysis. Acta Diabetol. 2021;58(6):671–85. doi: 10.1007/s00592-020-01648-9.

8. Kunutsor SK, Balasubramanian VG, Zaccardi F, Gillies CL, Aroda VR, Seidu S, Khunti K. Glycaemic control and macrovascular and microvascular outcomes: A systematic review and meta-analysis of trials investigating intensive glucoselowering strategies in people with type 2 diabetes. Diabetes Obes Metab. 2024;26(6):2069–81. doi: 10.1111/dom.15511.

9. Gerstein HC, Hart R, Colhoun HM, Diaz R, Lakshmanan M, Botros FT et al. The effect of dulaglutide on stroke: An exploratory analysis of the REWIND trial. Lancet Diabetes Endocrinol. 2020;8(2):106–14. doi: 10.1016/S2213-8587(19)30423-1.

10. Arnott C, Li Q, Kang A, Neuen BL, Bompoint S, Lam CSP, Rodgers A, et al. SodiumGlucose Cotransporter 2 Inhibition for the Prevention of Cardiovascular Events in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2020 Feb 4;9(3):e014908. doi: 10.1161/JAHA.119.014908.

11. Zhou Z, Jardine MJ, Li Q, Neuen BL, Cannon CP, de Zeeuw D et al.; CREDENCE Trial Investigators. Effect of SGLT2 inhibitors on stroke and atrial fibrillation in diabetic kidney disease: Results from the CREDENCE trial and meta-analysis. Stroke. 2021;52(5):1545–56. doi: 10.1161/STROKEAHA.120.031623.

12. Pasqualotto E, Rodrigues FR, E Silva Ribeiro GB, de Oliveira Almeida G, Kabariti JC, Ferreira ROM et al. The effect of sodium-glucose transporter 2 inhibitors on stroke in patients with type 2 diabetes: A meta-analysis. J Stroke Cerebrovasc Dis. 2024;33(8):107730. doi: 10.1016/j.jstrokecerebrovasdis.2024.107730.

13. Chang SN, Chen JJ, Huang PS, Wu CK, Wang YC, Hwang JJ, Tsai CT. Sodium-glucose cotransporter-2 inhibitor prevents stroke in patients with diabetes and atrial fibrillation. J Am Heart Assoc. 2023;12(10):e027764. doi: 10.1161/JAHA.122.027764.

14. Patel SM, Kang YM, Im K, Neuen BL, Anker SD, Bhatt DL et al. Sodium-glucose cotransporter-2 inhibitors and major adverse cardiovascular outcomes: A SMART-C collaborative meta-analysis. Circulation. 2024;149(23):1789–801. doi: 10.1161/CIRCULATIONAHA.124.069568.

15. Wang F, Li C, Cui L, Gu S, Zhao J, Wang H. Effects of sodium-glucose cotransporter 2 inhibitors on cardiovascular and cerebrovascular diseases: A meta-analysis of controlled clinical trials. Front Endocrinol (Lausanne). 2024;15:1436217. doi: 10.3389/fendo.2024.1436217.

16. Park CH, Lee B, Han M, Rhee WJ, Kwak MS, Yoo TH, Shin JS. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Discov. 2022;8(1):12. doi: 10.1038/s41420-021-00801-9.

17. D'Onofrio N, Sardu C, Trotta MC, Scisciola L, Turriziani F, Ferraraccio F et al. Sodium-glucose co-transporter2 expression and inflammatory activity in diabetic atherosclerotic plaques: Effects of sodium-glucose co-transporter2 inhibitor treatment. Mol Metab. 2021;54:101337. doi: 10.1016/j.molmet.2021.101337.

18. Moustafa B, Trifan G. The role of diabetes and SGLT2 inhibitors in cerebrovascular diseases. Curr Neurol Neurosci Rep. 2025;25(1):37. doi: 10.1007/s11910-025-01425-7.

19. Niu Y, Zhang Y, Zhang W, Lu J, Chen Y, Hao W et al. Canagliflozin ameliorates NLRP3 inflammasome-mediated inflammation through inhibiting NF-κB signaling and upregulating Bif-1. Front Pharmacol. 2022;13:820541. doi: 10.3389/fphar.2022.820541.

20. Rahadian A, Fukuda D, Salim HM, Yagi S, Kusunose K, Yamada H et al. Canagliflozin prevents diabetes-induced vascular dysfunction in ApoE-deficient mice. J Atheroscler Thromb. 2020;27(11):1141–51. doi: 10.5551/jat.52100.

21. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, Jaiwongkam T, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43–50. doi: 10.1016/j.taap.2017.08.005.

22. Youn YJ, Kim S, Jeong HJ, Ah YM, Yu YM. Sodium-glucose cotransporter-2 inhibitors and their potential role in dementia onset and cognitive function in patients with diabetes mellitus: A systematic review and meta-analysis. Front Neuroendocrinol. 2024;73:101131. doi: 10.1016/j.yfrne.2024.101131.

23. Gyimesi G, Pujol-Gimenez J, Kanai Y, Hediger MA. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: From molecular discovery to clinical application. Pflugers Arch. 2020;472(9):1177–206. doi: 10.1007/s00424-020-02433-x.

24. Pawlos A, Broncel M, Wozniak E, Gorzelak-Pabis P. Neuroprotective effect of SGLT2 inhibitors. Molecules. 2021;26(23):7213. doi: 10.3390/molecules26237213.

25. Mahaffey KW, Neal B, Perkovic V, de Zeeuw D, Fulcher G, Erondu N et al.; CANVAS Program Collaborative Group. Canagliflozin for primary and secondary prevention of cardiovascular events: results from the CANVAS program (Canagliflozin Cardiovascular Assessment Study). Circulation. 2018;137(4):323–34. doi: 10.1161/CIRCULATIONAHA.117.032038.

26. Rosenthal N, Meininger G, Ways K, Polidori D, Desai M, Qiu R et al. Canagliflozin: A sodium glucose co-transporter 2 inhibitor for the treatment of type 2 diabetes mellitus. Ann N Y Acad Sci. 2015;1358:28–43. doi: 10.1111/nyas.12852.

27. Dong M, Chen H, Wen S, Yuan Y, Yang L, Li Yet al. The neuronal and non-neuronal pathways of sodium-glucose cotransporter-2 inhibitor on body weightloss and insulin resistance. Diabetes Metab Syndr Obes. 2023;16:425–35. doi: 10.2147/DMSO.S399367.

28. Razaghizad A, Ni J, Marques P, Mavrakanas TA, Tsoukas MA, Possik E et al. Cardiovascular phenotypes in type 2 diabetes: Latent class analysis of the CANVAS Program and CREDENCE trial. Diabetes Obes Metab. 2024;26(11):5025–35. doi: 10.1111/dom.15768.

29. Arafa NMS, Ali EHA, Hassan MK. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem Biol Interact. 2017;277:195–203. doi: 10.1016/j.cbi.2017.08.013.

30. Abdelaziz AM, Rasheed NOA, Zaki HF, et al. Canagliflozin attenuates neurodegeneration and ameliorates dyskinesia through targeting the NLRP3/ Nurr1/GSK-3β/SIRT3 pathway and autophagy modulation in rotenone-lesioned rats. Int Immunopharmacol. 2025;146:113839. doi:10.1016/j.intimp.2024.113839.

31. Taylor AIP, Xu Y, Wilkinson M, Chakraborty P, Brinkworth A, Willis LF et al. Kinetic steering of amyloid formation and polymorphism by canagliflozin, a type-2 diabetes drug. J Am Chem Soc. 2025;147(14):11859–78. doi: 10.1021/jacs.4c16743.

32. Garza-Lombo C, Schroder A, Reyes-Reyes EM, Franco R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr Opin Toxicol. 2018;8:102–110. doi: 10.1016/j.cotox.2018.05.002.

33. Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci. 2023;328:121904. doi: 10.1016/j.lfs.2023.121904.

34. Мурашева А.В., Каронова Т.Л., Фукс О.С., Тимкина Н.В., Федотова А.Д., Гринева Е.Н., Шляхто Е.В. Сравнительное исследование нейропротективных свойств ингибиторов натрий-глюкозного котранспортера-2 и агонистов рецепторов глюкагоноподобного пептида-1 у пациентов с сахарным диабетом 2 типа. Сахарный диабет. 2025;28(2):187–197. doi: 10.14341/DM13255.

35. Кокин А.С., Суплотова Л.А. Нейропротекторный потенциал глифлозинов. Сахарный диабет. 2023;26(6):596–602. doi: 10.14341/DM13085.


Review

For citations:


Antonova K.V., Panina A.A., Lagoda O.V., Shukina E.P., Weber S.A. Cerebral disorders and diabetes mellitus: Central effects of sodium-glucose co-transporter inhibitors. FOCUS. Endocrinology. 2025;6(4):55-62. (In Russ.) https://doi.org/10.62751/2713-0177-2025-6-4-07

Views: 48

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)