Preview

FOCUS. Endocrinology

Advanced search

The impact of smoking on the intestinal microbiota: From pathogenesis to modern approaches to risk reduction

https://doi.org/10.62751/2713-0177-2025-6-3-10

Abstract

The intestinal microbiota is a complex and unique structure that includes tens of thousands of bacterial species and regulates many processes in the human body to maintain homeostasis. Cigarette smoke, being a source of exposure to toxic chemicals, causes a wide range of pathological processes associated with smoking, one of which is a change in the composition and structure of the intestinal microbiota, increased permeability of the mucous membrane and local inflammatory reactions. This review highlights the currently accumulated knowledge about the mechanisms of the influence of cigarette smoke on the intestinal microbiota, and also examines the concept of harm reduction from smoking, which offers a patient who is not motivated to quit smoking to switch to products that are less harmful than traditional cigarettes and have a reduced risk.

About the Authors

T. Yu. Demidova
Pirogov Russian National Research Medical University
Russian Federation

Tatyana Yu. Demidova – D. Sci. (Med.), Prof., Head of the Department of Endocrinology, Institute of Clinical Medicine,

Author ID: 7003771623

Moscow



T. T. Mayarbieva
Pirogov Russian National Research Medical University

Tanzila T. Mayarbieva – Assistant of the Department of endocrinology, Institute of Clinical Medicine 

Moscow



V. E. Bairova
Pirogov Russian National Research Medical University

Valeria E. Bairova – Assistant of the Department of endocrinology, Institute of Clinical Medicine 

Moscow



References

1. Piewngam P, De Mets F, Otto M. Intestinal microbiota: The hidden gem in the gut? Asian Pac J Allergy Immunol. 2020;38(4):215–24. doi: 10.12932/AP-020720-0897.

2. Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ. 2019;7:e7502. doi: 10.7717/peerj.7502.

3. Hou K, Wu ZX, Chen XY, Wang JQ, Zhang D, Xiao C et al. Microbiota in health and diseases. Signal Transduct Target Ther. 2022;7(1):135. doi: 10.1038/s41392-022-00974-4.

4. Tomoda K, Kubo K, Asahara T, Andoh A, Nomoto K, Nishii Y et al. Cigarette smoke decreases organic acids levels and population of Bifidobacterium in the caecum of rats. J Toxicol Sci. 2011;36(3):261–66. doi: 10.2131/jts.36.261.

5. Chi L, Mahbub R, Gao B, Bian X, Tu P, Ru H, Lu K. Nicotine alters the gut microbiome and metabolites of gut-brain interactions in a sex-specific manner. Chem Res Toxicol. 2017;30(12):2110–19. doi: 10.1021/acs.chemrestox.7b00162.

6. Wang R, Li S, Jin L, Zhang W, Liu N, Wang H et al. Four-week administration of nicotinemoderately impacts blood metabolic profile and gut microbiota in a diet-dependent manner. Biomed Pharmacother. 2019;115:108945. doi: 10.1016/j.biopha.2019.108945.

7. Sun R, Xu K, Ji S, Pu Y, Man Z, Ji J et al. Benzene exposure induces gut microbiota dysbiosis and metabolic disorder in mice. Sci Total Environ. 2020;705:135879. doi: 10.1016/j.scitotenv.2019.135879.

8. Gui X, Yang Z, Li MD. Eff of cigarette smoke on gut microbiota: State of knowledge. Front Physiol. 2021;12:673341. doi: 10.3389/fphys.2021.673341.

9. Cui J, Wu F, Yang X, Liu T, Xia X, Chang X et al. Eff of exposure to gaseous hydrogen sulphide on cecal microbial diversity of weaning pigs. Vet Med Sci. 2021;7(2):424–31. doi: 10.1002/vms3.324.

10. Jin Y, Wu S, Zeng Z, Fu Z. Effects of environmental pollutants on gut microbiota. Environ Pollut. 2017;222:1–9. doi: 10.1016/j.envpol.2016.11.045.

11. Wu J, Wen XW, Faulk C, Boehnke K, Zhang H, Dolinoy DC, Xi C. Perinatal lead exposure alters gut microbiota composition and results in sex-specifi bodyweight increases in adult mice. Toxicol Sci. 2016;151(2):324–33. doi: 10.1093/toxsci/kfw046.

12. Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere. 2014;112:1–8. doi: 10.1016/j.chemosphere.2014.03.068.

13. Antinozzi M, Giffi M, Sini N, Galle F, Valeriani F, De Vito C et al. Cigarette smoking and human gut microbiota in healthy adults: A systematic review. Biomedicines. 2022;10(2):510. doi: 10.3390/biomedicines10020510.

14. Prakash A, Peters BA, Cobbs E, Beggs D, Choi H, Li H et al. Tobacco smoking and the fecal in a large, multi-ethnic cohort. Cancer Epidemiol Biomarkers Prev. 2021;30(7):1328–35. doi: 10.1158/1055-9965.EPI-20-1417.

15. Lee SH, Yun Y, Kim SJ, Lee EJ, Chang Y, Ryu S et al. Association between cigarette smoking status and composition of gut microbiota: Population-based crosssectional study. J Clin Med. 2018;7(9):282. doi: 10.3390/jcm7090282.

16. Stewart CJ, Auchtung TA, Ajami NJ, Velasquez K, Smith DP, De La Garza R 2nd et al. Effects of tobacco smoke and electronic cigarette vapor exposure on the oral and gut microbiota in humans: A pilot study. PeerJ. 2018;6:e4693. doi: 10.7717/peerj.4693.

17. Biedermann L, Zeitz J, Mwinyi J, Sutter-Minder E, Rehman A, Ott SJ et al. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans. PLoS One. 2013;8(3):e59260. doi: 10.1371/journal.pone.0059260.

18. Wang L, Cai Y, Garssen J, Henricks PAJ, Folkerts G, Braber S. The bidirectional gut-lung axis in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2023;207(9):1145–60. doi: 10.1164/rccm.202206-1066TR.

19. Raftery AL, Tsantikos E, Harris NL, Hibbs ML. Links between inflammatory bowel disease and chronic obstructive pulmonary disease. Front Immunol. 2020;11:2144. doi: 10.3389/fimmu.2020.02144.

20. Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY et al. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun. 2020;11(1):5886. doi: 10.1038/s41467-020-19701-0.

21. Nicolaides S, Vasudevan A, Long T, van Langenberg D. The impact of tobacco smoking on treatment choice and efficacy in inflammatory bowel disease. Intest Res. 2021;19(2):158–70. doi: 10.5217/ir.2020.00008.

22. Li X, Chang Z, Wang J, Ding K, Pan S, Hu H, Tang Q. Unhealthy lifestyle factors and the risk of colorectal cancer: A Mendelian randomization study. Sci Rep. 2024;14(1):13825. doi: 10.1038/s41598-024-64813-y.

23. Российский мониторинг экономического положения и здоровья населения НИУ ВШЭ. Доступ: https://www.hse.ru/rlms/ (дата обращения – 23.09.2025).

24. Hughes JR, Keely J, Naud S. Shape of the relapse curve and long-term abstinence among untreated smokers. Addiction. 2004;99(1):29–38. doi: 10.1111/j.1360-0443.2004.00540.x.

25. Hartmann-Boyce J, McRobbie H, Lindson N, Bullen C, Begh R, Theodoulou A et al. Electronic cigarettes for smoking cessation. 2021;4(4):CD010216. doi: 10.1002/14651858.CD010216.pub5.

26. Wagener TL, Floyd EL, Stepanov I, Driskill LM, Frank SG, Meier E et al. Have combustible cigarettes met their match? The nicotine delivery profiles and harmful constituent exposures of second-generation and thirdgeneration electronic cigarette users. Tob Control. 2017;26(e1):23–28. doi: 10.1136/tobaccocontrol-2016-053041.

27. Toll BA, Rojewski AM, Duncan LR, Latimer-Cheung AE, Fucito LM, Boyer JL et al. “Quitting smoking will benefi your health”: The evolution of clinician messaging to encourage tobacco cessation. Clin Cancer Res. 2014;20(2):301–9. doi: 10.1158/1078-0432.CCR-13-2261.

28. Rose J. Nicotine and nonnicotine factors in cigarette addiction. Psychopharmacology (Berl). 2006;184(3-4):274–85. doi: 10.1007/s00213-005-0250-x.

29. Tian Y, Cheng J, Yang Y, Wang H, Fu Y, Li X et al. A 90-day subchronic exposure to heated tobacco product aerosol caused differences in intestinal inflammation and microbiome dysregulation in rats. Nicotine Tob Res. 2025;27(3):438–46. doi: 10.1093/ntr/ntae179.

30. U.S. Food and Drug Administration (FDA). Modified Risk Tobacco Products [Electronic resource]. URL: https://www.fda.gov/tobacco-products/advertisingand-promotion/modified-risk-tobacco-products (date of access – 23.09.2025).

31. Tattan-Birch H, Hartmann-Boyce J, Kock L, Simonavicius E, Brose L, Jackson S et al. Heated tobacco products for smoking cessation and reducing smoking prevalence. Cochrane Database Syst Rev. 2022;1(1):CD013790. doi: 10.1002/14651858.CD013790.pub2.

32. Battey JND, Szostak J, Phillips B, Teng C, Tung CK, Lim WT et al. Impact of 6-month exposure to aerosols from potential modifi risk tobacco products relative to cigarette smoke on the rodent gastrointestinal tract. ront Microbiol. 2021;12:587745. doi: 10.3389/fmicb.2021.58774.


Review

For citations:


Demidova T.Yu., Mayarbieva T.T., Bairova V.E. The impact of smoking on the intestinal microbiota: From pathogenesis to modern approaches to risk reduction. FOCUS. Endocrinology. 2025;6(3):77-85. (In Russ.) https://doi.org/10.62751/2713-0177-2025-6-3-10

Views: 147

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2713-0177 (Print)
ISSN 2713-0185 (Online)