Ингибиторы натрий-глюкозных котранспортеров и мозг
https://doi.org/10.15829/2713-0177-2023-4-26
Аннотация
Сахарный диабет (СД) ассоциирован с повышенным риском инсульта и когнитивных нарушений. Проблема профилактики церебральных нарушений при СД не решена. В обзоре представлены современные данные о месте и роли натрий-глюкозных котранспортеров (НГЛТ) в головном мозге, рецепторы которых играют важную роль при ишемически-реперфузионном повреждении головного мозга и нейродегенеративных изменениях. Представлены и обобщены современные исследования, посвященные церебропротекторным эффектам сахароснижающих препаратов – ингибиторов НГЛТ.
Об авторах
К. В. АнтоноваРоссия
д.м.н., врач-эндокринолог, ведущий научный сотрудник 1-го неврологического отделения
125367 Москва, Волоколамское шоссе, 80
М. М. Танашян
Россия
д.м.н., профессор, член-корр. РАН, зам. директора по научной работе, руководитель 1-го неврологического отделения
125367 Москва, Волоколамское шоссе, 80
О. В. Лагода
Россия
к.м.н., врач-невролог высшей категории, старший научный сотрудник 1-го неврологического отделения
125367 Москва, Волоколамское шоссе, 80
Т. С. Шишкина
Россия
ординатор
125367 Москва, Волоколамское шоссе, 80
И. М. Ловчев
Россия
ординатор
125367 Москва, Волоколамское шоссе, 80
Список литературы
1. Дедов И.И., Шестакова М. В., Викулова О. К., et al. Сахарный диабет в Российской Федерации: динамика эпидемиологических показателей по данным Федерального регистра сахарного диабета за период 2010–2022 гг. Сахарный диабет. 2023;26(2):104–123. https://doi.org/10.14341/DM13035.
2. Emerging Risk Factors Collaboration; Sarwar N, Gao P, Seshasai SR, Gobin R, et alDiabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010 Jun 26;375(9733):2215–22. doi: 10.1016/S0140-6736(10)60484-9.
3. Diabetes care and research in Europe: the Saint Vincent declaration. Diabet Med. 1990 May;7(4):360. PMID: 2140091.
4. Tsivgoulis G., Katsanos A. H., Mavridis D., et al. Association of baseline hyperglycemia with outcomes of patients with and without diabetes with acute ischemic stroke treated with intravenous thrombolysis: a propensity score-matched analysis from the SITS-ISTR registry. Diabetes. 2019; 68:1861–1869.
5. Танашян М.М., Антонова К. В., Лагода О. В., Шабалина А. А. Решенные и нерешенные вопросы цереброваскулярной патологии при сахарном диабете // Анналы клинической и экспериментальной неврологии. 2021. Т. 15. № 3. C. 5–14. doi:10.54101/ACEN.2021.3.1.
6. Bonnet F., Scheen A. J. Impact of glucose-lowering therapies on risk of stroke in type 2 diabetes. Diabetes Metab. 2017 Sep;43(4):299–313. doi:10.1016/j.diabet.2017.04.004. Epub 2017 May 15. PMID: 28522196.
7. Gerstein H.C., Hart R., Colhoun H. M., et al. The effect of dulaglutide on stroke: an exploratory analysis of the REWIND trial. Lancet Diabetes Endocrinol. 2020 Feb;8(2):106–114. doi:10.1016/S2213-8587(19)30423-1.
8. Gallo L.A., Wright E. M., Vallon V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diabetes Vasc. Dis. Res. 2015; 12:78–89. doi:10.1177/1479164114561992.
9. Kaushal S., Singh H., Thangaraju P., Singh J. Canagliflozin: A Novel SGLT2 Inhibitor for Type 2 Diabetes Mellitus. N. Am. J. Med. Sci. 2014; 6:107–113.
10. Al Hamed FA, Elewa H. Potential Therapeutic Effects of Sodium Glucose-linked Cotransporter 2 Inhibitors in Stroke. Clin Ther. 2020 Nov;42(11): e242-e249. doi:10.1016/j.clinthera.2020.09.008.
11. Imprialos K.P., Boutari C., Stavropoulos K., et al. Stroke paradox with SGLT-2 inhibitors: a play of chance or a viscosity-mediated reality? Journal of Neurology, Neurosurgery & Psychiatry 2017;88:249–253.
12. Neal B., Perkovic V., Mahaffey K. W., et al.; CANVAS Program Collaborative Group. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017 Aug 17;377(7):644–657. doi:10.1056/NEJMoa1611925.
13. Zhou Z., Jardine M. J., Li Q., et al.; CREDENCE Trial Investigators*. Effect of SGLT2 Inhibitors on Stroke and Atrial Fibrillation in Diabetic Kidney Disease: Results From the CREDENCE Trial and Meta-Analysis. Stroke. 2021 May;52(5):1545–1556. doi: 10.1161/STROKEAHA.120.031623.
14. Sayour A.A., Olah A., Ruppert M., et al., Pharmacological selectivity of SGLT2 inhibitors and cardiovascular outcomes in patients with type 2 diabetes: a meta-analysis, European Heart Journal, 2022; 43 (2), ehac544.2688, https://doi.org/10.1093/eurheartj/ehac544.2688.
15. Bartness T.J., Shrestha Y. B., Vaughan C. H., et al. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol. 2010; 318:34–43. doi: 10.1016/j.mce.2009.08.031.
16. Cypess A.M., Weiner L. S., Roberts-Toler C, et al. Activation of human brown adipose tissue by a beta 3-adrenergic receptor agonist. Cell Metab. 2015; 21:33–38. doi: 10.1016/j.cmet.2014.12.009.
17. Chiba Y, Yamada T, Tsukita S, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS One. 2016;11: e0150756. doi: 10.1371/journal.pone.0150756.
18. Yang X, Liu Q, Li Y, et al. Inhibition of the sodium-glucose co-transporter SGLT2 by canagliflozin ameliorates diet-induced obesity by increasing intra-adipose sympathetic innervation. Br J Pharmacol. 2021;178:1756–1771. doi: 10.1111/bph.15381.
19. Dong M., Chen H., Wen S., et al. The Neuronal and Non-Neuronal Pathways of Sodium-Glucose Cotransporter-2 Inhibitor on Body Weight-Loss and Insulin Resistance. Diabetes Metab Syndr Obes. 2023 Feb 14;16:425–435. doi: 10.2147/DMSO.S399367.
20. Rieg T., Vallon V. Development of SGLT1 and SGLT2 inhibitors. Diabetologia. 2018; 61:2079–2086. doi: 10.1007/s00125-018-4654-7.
21. Wright E.M., Loo D. D., Hirayama B. A. Biology of human sodium glucose transporters. Physiol. Rev. 2011; 91:733–794. doi: 10.1152/physrev.00055.2009.
22. Vallon V. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. Annu. Rev. Med. 2015; 66:255–270. doi: 10.1146/annurev-med-051013-110046.
23. Saisho Y. SGLT2 Inhibitors: The Star in the Treatment of Type 2 Diabetes? Diseases. 2020; 8:14. doi: 10.3390/diseases8020014.
24. Erdogan M.A., Yusuf D., Christy J., et al. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 2018; 18:81. doi: 10.1186/s12883-018-1086-4.
25. Youssef ME, Yahya G, Popoviciu MS, et al. Unlocking the Full Potential of SGLT2 Inhibitors: Expanding Applications beyond Glycemic Control. Int J Mol Sci. 2023 Mar 23;24(7):6039. doi: 10.3390/ijms24076039.
26. Perspective of SGLT2 inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer’s disease and ischemia-related brain injury. Wiciński M, Wódkiewicz E, Górski K, Walczak M, Malinowski B. Pharmaceuticals (Basel) 2020;13:379.
27. Gyimesi G., Pujol-Giménez J., Kanai Y., Hediger M. A. Sodium-coupled glucose transport, the SLC5 family, and therapeutically relevant inhibitors: from molecular discovery to clinical application. Pflug. Arch. Eur. J. Physiol. 2020; 472:1177–1206, doi: 10.1007/s00424-020-02433-x.
28. Koekkoek L.L., Mul J. D., la Fleur S. E. Glucose-sensing in the reward system Front. Neurosci., 2017;11: 716 doi: 10.3389/fnins.2017.00716.
29. Oerter S., Förster C., Bohnert M. Validation of sodium/glucose cotransporter proteins in human brain as a potential marker for temporal narrowing of the trauma formation. Int. J. Legal Med. 2019; 133:1107–1114. doi: 10.1007/s00414-018-1893-6.
30. Wiciński M., Wódkiewicz E., Górski K., et al. Perspective of SGLT2 Inhibition in treatment of conditions connected to neuronal loss: focus on Alzheimer’s disease and ischemia-related brain injury. Pharmaceuticals, 11 (2020), p. 379, 10.3390/ph13110379.
31. Poppe R., Karbach U., Gambaryan S. et al. Expression of the Na+-D-glucose cotransporter SGLT1 in neurons. J. Neurochem. 1997; 69:84–94. doi: 10.1046/j.1471-4159.1997.69010084.x.
32. Koepsell H. Glucose transporters in brain in health and disease. Pflugers Arch. Eur. J. Physiol. 2020; 472:1299–1343. doi: 10.1007/s00424-020-02441-x.
33. Nguyen T., Wen S., Gong M., et al. Dapagliflozin activates neurons in the central nervous system and regulates cardiovascular activity by inhibiting sglt-2 in mice. Diabetes, Metab. Syndr. Obes. Targets Ther. 2020;13:2781–2799. doi: 10.2147/DMSO.S258593.
34. Gaur A., Pal G. K., Ananthanarayanan P. H., Pal P. Role of Ventromedial hypothalamus in high fat diet induced obesity in male rats: Association with lipid profile, thyroid profile and insulin resistance. Ann. Neurosci. 2014; 21:104–107. doi: 10.5214/ans.0972.7531.210306.
35. Pawlos A, Broncel M, Woźniak E, Gorzelak-Pabiś P. Neuroprotective Effect of SGLT2 Inhibitors. Molecules. 2021 Nov 28;26(23):7213. doi: 10.3390/molecules26237213.
36. Ferrari F, Moretti A, Villa RF. Hyperglycemia in acute ischemic stroke: physiopathological and therapeutic complexity. Neural Regen Res. 2022 Feb;17(2):292–299. doi: 10.4103/1673-5374.317959.
37. Amin E.F., Rifaai R. A., Abdel-Latif R. G. Empagliflozin attenuates transient cerebral ischemia/reperfusion injury in hyperglycemic rats via repressing oxidativeinflammatory-apoptotic pathway. Fundam Clin Pharmacol. 2020;34:548–558. doi: 10.1111/fcp.12548.
38. Ishida N., Saito M., Sato S. et al. SGLT1 participates in the development of vascular cognitive impairment in a mouse model of small vessel disease. Neurosci. Lett. 2020; 727:134929. doi: 10.1016/j.neulet.2020.134929.
39. Yamazaki Y., Harada S., Wada T. et al. Sodium influx through cerebral sodiumglucose transporter type 1 exacerbates the development of cerebral ischemic neuronal damage. Eur. J. Pharmacol. 2017 doi: 10.1016/j.ejphar.2017.02.007.
40. Sebastiani A., Greve F., Gölz C. et al. RS 1 (Rsc1A1) deficiency limits cerebral SGLT 1 expression and delays brain damage after experimental traumatic brain injury. J. Neurochem. 2018; 147:190–203. doi: 10.1111/jnc.14551.
41. Malhotra A., Kudyar S., Gupta A. et al. Sodium glucose co-transporter inhibitors – A new class of old drugs. Int. J. Appl. Basic Med. Res. 2015; 5:161. doi: 10.4103/2229-516X.165363.
42. Rizzo MR, Di Meo I, Polito R, et al. Cognitive impairment and type 2 diabetes mellitus: Focus of SGLT2 inhibitors treatment. Pharmacol Res. 2022 Feb; 176:106062. doi: 10.1016/j.phrs.2022.106062.
43. Spinelli M., Fusco S., Grassi C. Brain insulin resistance and hippocampal plasticity: mechanisms and biomarkers of cognitive decline. Front. Neurosci. 2019; 31:788, 10.3389/fnins.2019.00788.
44. Tang H, Shao H, Shaaban CE et al. Newer glucose-lowering drugs and risk of dementia: A systematic review and meta-analysis of observational studies. J Am Geriatr Soc. 2023 Jul;71(7):2096–2106. doi: 10.1111/jgs.18306.
45. Tahara A., Takasu T., Yokono M. et al. Characterization and comparison of sodiumglucose cotransporter 2 inhibitors in pharmacokinetics, pharmacodynamics, and pharmacologic effects. J. Pharmacol. Sci. 2016; 130:159–169. doi: 10.1016/j.jphs.2016.02.003.
46. Sim A.Y., Barua S., Kim J. Y. et al. Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Front. Neurosci. 2021; 15:708547. doi: 10.3389/fnins.2021.708547.
47. Sripetchwandee J., Chattipakorn N., Chattipakorn S. C. Links between obesityinduced brain insulin resistance, brain mitochondrial dysfunction, and dementia. Front. Endocrinol. 2018; 9:496. doi: 10.3389/fendo.2018.00496.
48. Sa-Nguanmoo P, Tanajak P, Kerdphoo S et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017 Oct 15;333:43–50. doi: 10.1016/j.taap.2017.08.005.
49. Sharma VK, Singh TG. Insulin resistance and bioenergetic manifestations: Targets and approaches in Alzheimer’s disease. Life Sci. 2020; 262:118401. doi: 10.1016/j.lfs.2020.118401.
50. Mueed, Tandon, P., Maurya, S. K. et al. (2018). Tau and mTOR: the hotspots for multifarious diseases in Alzheimer’s development. Front. Neurosci. 12:1017. doi: 10.3389/fnins.2018.01017.
51. Bockaert J, Marin P. mTOR in Brain Physiology and Pathologies. Physiol Rev. 2015 Oct;95(4):1157–87. doi: 10.1152/physrev.00038.2014.
52. Esterline, R., Oscarsson, J., and Burns, J. (2020). A role for sodium glucose cotransporter 2 inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? Int. Rev. Neurobiol. 155, 113–140. doi: 10.1016/bs.irn.2020.03.018.
53. Kim, J. H., Lee, M., Kim, S. H., et al. (2019). Sodium-glucose cotransporter 2 inhibitors regulate ketone body metabolism via inter-organ crosstalk. Diabetes Obes. Metab. 21, 801–811. doi: 10.1111/dom.13577.
54. Kim SR, Lee SG, Kim SH et al. SGLT2 inhibition modulates NLRP3 inflammasome activity via ketones and insulin in diabetes with cardiovascular disease. Nat Commun. 2020 May 1;11(1):2127. doi: 10.1038/s41467-020-15983-6.
55. Stanciu GD, Rusu RN, Bild V et al. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer’s Disease and Diabetes. Biomedicines. 2021 May 19;9(5):576. doi: 10.3390/biomedicines9050576.
56. Arafa N.M.S., Ali E. H.A., Hassan M. K. Canagliflozin prevents scopolamineinduced memory impairment in rats: Comparison with galantamine hydrobromide action. Chem. Biol. Interact. 2017; 277:195–203. doi: 10.1016/j.cbi.2017.08.013.
57. Rizvi S., Shakil S., Biswas D. et al. Invokana (Canagliflozin) as a Dual Inhibitor of Acetylcholinesterase and Sodium Glucose Co-Transporter 2: Advancement in Alzheimer’s Disease- Diabetes Type 2 Linkage via an Enzoinformatics Study. CNS Neurol. Disord. – Drug Targets. 2014; 13:447–451. doi: 10.2174/18715273113126660160.
58. Chiba Y., Sugiyama Y., Nishi N. et al. Sodium/glucose cotransporter 2 is expressed in choroid plexus epithelial cells and ependymal cells in human and mouse brains. Neuropathology. 2020; 40:482–491. doi: 10.1111/neup.12665.
59. Pearson A., Ajoy R., Crynen G. et al. Molecular abnormalities in autopsied brain tissue from the inferior horn of the lateral ventricles of nonagenarians and Alzheimer disease patients. BMC Neurol. 2020; 20:1–20. doi: 10.1186/s12883-020-01849-3.
60. Ahmed S., El-Sayed M. M., Kandeil M. A., Khalaf M. M. Empagliflozin attenuates neurodegeneration through antioxidant, anti-inflammatory, and modulation of α-synuclein and Parkin levels in rotenone-induced Parkinson’s disease in rats. Saudi Pharm. J. 2022; 30:863–873. doi: 10.1016/j.jsps.2022.03.005.
61. Tharmaraja T., Ho J. S., Sia C.-H., et al. Sodium-glucose cotransporter 2 inhibitors and neurological disorders: A scoping review. Ther. Adv. Chronic Dis. 2022;13:20406223221086996. doi: 10.1177/20406223221086996.
62. Arab H.H., Safar M. M., Shahin N. N. Targeting ROS-Dependent AKT/GSK-3β/ NF-κB and DJ-1/Nrf2 Pathways by Dapagliflozin Attenuates Neuronal Injury and Motor Dysfunction in Rotenone-Induced Parkinson’s Disease Rat Model. ACS Chem. Neurosci. 2021; 12:689–703. doi: 10.1021/acschemneuro.0c00722.
63. Jiang T., Gao L., Guo J. et al. Suppressing inflammation by inhibiting the NF-κB pathway contributes to the neuroprotective effect of angiotensin-(1–7) in rats with permanent cerebral ischaemia. Br. J. Pharmacol. 2012; 167:1520–1532. doi: 10.1111/j.1476-5381.2012.02105.x.
64. Kusminski C.M., Bickel P. E., Scherer P. E. Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat. Rev. Drug Discov. 2016; 15:639–660. doi: 10.1038/nrd.2016.75.
65. Nikolajević Starčević J., Janić M., Šabovič M. Molecular mechanisms responsible for diastolic dysfunction in diabetes mellitus patients. Int. J. Mol. Sci. 2019; 20:1197. doi: 10.3390/ijms20051197.
66. Heerspink H.J., Perco P., Mulder S. et al. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia. 2019; 62:1154–1166. doi: 10.1007/s00125-019-4859-4.
67. Nasiri-Ansari Ν, Dimitriadis GK, Agrogiannis G, et al. Canagliflozin attenuates the progression of atherosclerosis and inflammation process in APOE knockout mice. Cardiovasc Diabetol. 2018;17(1):106. doi: 10.1186/s12933-018-0749-1.
68. Behnammanesh G, Durante ZE, Peyton KJ, Martinez-Lemus LA, Brown SM, Bender SB, Durante W. Canagliflozin Inhibits Human Endothelial Cell Proliferation and Tube Formation. Front Pharmacol. 2019 Apr 16;10:362. doi: 10.3389/fphar.2019.00362.
69. Kasichayanula S., Chang M., Hasegawa M. et al. Pharmacokinetics and pharmacodynamics of dapagliflozin, a novel selective inhibitor of sodium-glucose co-transporter type 2, in Japanese subjects without and with type 2 diabetes mellitus. Diabetes Obes. Metab. 2011; 13:357–365. doi: 10.1111/j.1463-1326.2011.01359.x.
70. Brand T., Macha S., Mattheus M. et al. Pharmacokinetics of Empagliflozin, a Sodium Glucose Cotransporter-2 (SGLT-2) Inhibitor, Coadministered with Sitagliptin in Healthy Volunteers. Adv. Ther. 2012;29:889–899. doi: 10.1007/s12325-012-0055-3.
71. A. Mascolo, C. Scavone, L. Scisciola et al. SGLT-2 inhibitors reduce the risk of cerebrovascular/cardiovascular outcomes and mortality: a systematic review and meta-analysis of retrospective cohort studies. Pharmacol. Res., 172 (2021), Article 105836, 10.1016/j.phrs.2021.105836.
Рецензия
Для цитирования:
Антонова К.В., Танашян М.М., Лагода О.В., Шишкина Т.С., Ловчев И.М. Ингибиторы натрий-глюкозных котранспортеров и мозг. FOCUS Эндокринология. 2023;4(4):42-51. https://doi.org/10.15829/2713-0177-2023-4-26
For citation:
Antonova K.V., Tashanyan M.M., Lagoda O.V., Shishkina T.S., Lovchev I.M. Sodium- glucose cotransporter inhibitors and the brain. FOCUS. Endocrinology. 2023;4(4):42-51. (In Russ.) https://doi.org/10.15829/2713-0177-2023-4-26