Sex differences in type 2 diabetes genetic susceptibility
https://doi.org/10.15829/2713-0177-2023-3-12
Abstract
Introduction. In the last few years gender and sex differences in type 2 diabetes (T2D) predisposition are paid much attention. This gap can be caused by the hormonal and genetic background and require further traits.
Aim. The aim of this study was to identify genetic markers of T2D predisposition depending on sex using 17 polymorphic markers of genes involved in various links of T2D pathogenesis.
Material and Methods. 536 patients with T2D and 1,476 healthy individuals were examined. Amplification of 17 polymorphic gene loci was performed by polymerase chain reaction. Associations of DNA polymorphisms with T2D were evaluated by logistic regression using the SNPStats program. The degree of association was assessed in the odds ratio (OR) scores. Correction for multiplicity of comparisons and multivariate analysis was used.
Results. The genotypes of increased T2D risk for men are CC of CCL20 rs6749704 marker (OR = 3.85, P = 0.0002) in recessive model, D/I of CCR5 rs333 marker (OR = 4.42, P = 0.0208); by GRIA1 marker rs2195450 - CT and TT in the dominant model (OR = 2.42, P = 0.0002), TT - in the recessive model (OR = 2.89, P = 0.0070). The genotypes of increased risk of T2D in women according to the marker TCF7L2 rs7903146 - CT and TT in the dominant model (OR = 1.69, P = 0.0003), TT - in recessive (OR = 1.61, P = 0.0124), according to the marker ADIPOQ rs17366743 - TC (OR = 2.55, P = 0.0168).
Conclusion. The established genotypes of increased T2D risk depending on gender make it possible to personalize approaches to primary T2D prevention.
About the Authors
D. S. AvzaletdinovaRussian Federation
Candidate of Medical Sciences, Associate Professor, Associate Professor of the Department of Endocrinology
450008, Ufa, st. Lenina, 3
T. V. Morugova
Russian Federation
Doctor of Medical Sciences, Professor, Head. Department of Endocrinology
450008, Ufa, st. Lenina, 3
O. V. Kochetova
Russian Federation
Candidate of Biological Sciences, senior researcher at the Laboratory of Physiological Genetics
450054, Ufa, Oktyabrya Ave., 71
References
1. International Diabetes Federation (2021) IDF Diabetes Atlas, 10th edn. International Diabetes Federation, Brussels.
2. Kautzky-Willer A, Harreiter J, Pacini G (2016) Sex and gender differences in risk, pathophysiology and complications of type 2 diabetes mellitus. Endocr Rev 37(3):278–316. https://doi.org/10.1210/er.2015–1137.
3. Tramunt B, Smati S, Grandgeorge N et al (2020) Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63(3):453–461. https://doi.org/10.1007/s00125–019–05040–3.
4. Kautzky-Willer, A., Leutner, M. & Harreiter, J. Sex differences in type 2 diabetes. Diabetologia 66, 986–1002 (2023). https://doi.org/10.1007/s00125–023–05891-x.
5. Karlsson T, Rask-Andersen M, Pan G et al (2019) Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 25(9):1390–1395. https://doi.org/10.1038/s41591–019–0563–7.
6. Chemokines in prediabetes and type 2 diabetes: a meta-analysis / X. Pan, A. C. Kaminga, S. W. Wen, A. Liu // Front. Immunol. – 2021. – Vol. 12. – P. 622438.
7. Kochetova OV, Avzaletdinova DS, Morugova TV, Mustafina OE. Chemokine gene polymorphisms association with increased risk of type 2 diabetes mellitus in Tatar ethnic group, Russia. Mol Biol Rep. 2019 Feb;46(1):887–896. doi: 10.1007/s11033-018-4544-6.
8. Cereijo R, Quesada-López T, Gavaldà-Navarro A, Tarascó J, Pellitero S, Reyes M, Puig-Domingo M, Giralt M, Sánchez- Infantes D, Villarroya F. The chemokine CXCL14 is negatively associated with obesity and concomitant type-2 diabetes in humans. Int J Obes (Lond). 2021 Mar;45(3):706–710. doi: 10.1038/s41366-020-00732-y.
9. Jais, A. Hypothalamic inflammation in obesity and metabolic disease / A. Jais, J. C. Brüning // J. Clin. Invest. – 2017. – Vol. 127, № 1. – P. 24–32.
10. The role of eating behavior traits in mediating genetic susceptibility to obesity / R. Jacob, V. Drapeau, A. Tremblay [et al.] // Amer. J. Clin. Nutr. – 2018. – Vol. 108, № 3. – P. 445–452.
11. Combinations of SNP genotypes from the wellcome trust case control study of bipolar patients / E. Mellerup, M. B. Jørgensen, H. Dam, G. L. Møller // Acta Neuropsychiatry. – 2018. – Vol. 30, № 2. – P. 106–110.
12. Kochetova OV, Avzaletdinova DS, Korytina GF, Morugova TV, Mustafina OE. The association between eating behavior and polymorphisms in GRIN2B, GRIK3, GRIA1 and GRIN1 genes in people with type 2 diabetes mellitus. Mol Biol Rep. 2020 Mar;47(3):2035–2046. doi: 10.1007/s11033-020-05304-x.
13. Эпидемиологические характеристики сахарного диабета в Российской Федерации: клиникостатистический анализ по данным регистра сахарного диабета на 01.01.2021 / И. И. Дедов, М. В. Шестакова, О. К. Викулова [и др.] // Сахарный диабет. – 2021. – Т. 24, № 3. – С. 204–221. – DOI 10.14341/DM12759.
14. Gauderman, W. J. Sample size requirements for association studies of genegene interaction / W. J. Gauderman // Am. J. Epidemiol. – 2002. – Vol. 155, № 5. – P. 478–484.
15. Кутихин, А. Г. Современные тенденции статистической обработки данных и представления результатов в кандидатных генетикоэпидемиологических исследованиях / А. Г. Кутихин, А. Е. Южалин, А. В. Понасенко // Фундаментальная и клиническая медицина. – 2017. – Т. 2, № 2. – С. 77–82.
16. Higher circulating levels of chemokines CXCL10, CCL20 and CCL22 in patients with ischemic heart disease / A. Safa, H. R. Rashidinejad, M. Khalili [et al.] // Cytokine. – 2016. – Vol. 83. – P. 147–157.
17. The combined effect of IL-17F and CCL20 gene polymorphism in susceptibility to multiple sclerosis in Egypt / F. Z. El Sharkawi, S. A. Ali, M. I. Hegazy, H. B. Atya // Gene. – 2019. – Vol. 15, № 685. – Р. 164–169.
18. Bernas S. N. et al. CCR5Δ32 mutations do not determine COVID-19 disease course //International Journal of Infectious Diseases. – 2021. – Т. 105. – С. 653–655.
19. Ellwanger J. H. et al. Beyond HIV infection: neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases //Virus research. – 2020. – Т. 286. – С. 198040.
20. Welters A, Klüppel C, Mrugala J, Wörmeyer L, Meissner T, Mayatepek E, Heiss C, Eberhard D, Lammert E. NMDAR antagonists for the treatment of diabetes mellitus- Current status and future directions. Diabetes Obes Metab. 2017 Sep;19 Suppl 1:95–106. doi: 10.1111/dom.13017.
21. Осокина, И. В. Изучение генетической предрасположенности к сахарному диабету 2 типа в якутской популяции / И. В. Осокина, Ф. А. Платонов // Евразийский союз ученых (ЕСУ). – 2018. – Т. 4, № 49. – С. 53–57.
22. Ассоциация аллелей гена адипонектина с сахарным диабетом 2-го типа у жителей Башкортостана / Д. Ш. Авзалетдинова, О. В. Кочетова, Л. Ф. Шарипова [и др.] // Проблемы эндокринологии. – 2019. – Т. 65, № 1. – С. 31–38.
23. Анализ ассоциаций полиморфного маркера rs7903146 гена TCF7L2 с сахарным диабетом 2 типа в татарской этнической группе, проживающей в Башкортостане / Д. Ш. Авзалетдинова, Л. Ф. Шарипова, О. В. Кочетова [и др.] // Сахарный диабет. – 2016. – Т. 19, № 2. – С. 119–124.
24. Jaganathan, R. Emerging role of adipocytokines in type 2 diabetes as mediators of insulin resistance and cardiovascular disease / R. Jaganathan, R. Ravindran, S. Dhanasekaran // Can. J. Diabetes. – 2018. – Vol. 42, № 4. – P. 446–456 e441.
25. The role of adipokines in skeletal muscle inflammation and insulin sensitivity / T. Nicholson, C. Church, D. J. Baker, S. W. Jones // J. Inflamm. (Lond). – 2018. – Vol. 15. – P. 9.
26. Metabolic adaptation in obesity and type ii diabetes: myokines, adipokines and hepatokines / K.-J. Oh, D. Lee, W. Kim [et al.] // Int. J. Mol. Sci. – 2016. – Vol. 18, № 1. – P. 8.
Review
For citations:
Avzaletdinova D.S., Morugova T.V., Kochetova O.V. Sex differences in type 2 diabetes genetic susceptibility. FOCUS. Endocrinology. 2023;4(3):29-35. (In Russ.) https://doi.org/10.15829/2713-0177-2023-3-12